МИНОБРНАУКИ РОССИИ Ярославский государственный университет им. П.Г. Демидова

Кафедра теоретической информатики

УТВЕРЖДАЮ

Декан факультета ИВТ

Д.Ю. Чалый «_23_»___мая____2023 г.

Рабочая программа дисциплины

«Архитектура компьютера»

Направление подготовки

01.03.02 Прикладная математика и информатика

Направленность (профиль)

«Искусственный интеллект»

Квалификация выпускника

Бакалавр

Форма обучения

очная

Программа рассмотрена на заседании кафедры от 12 апреля 2023 г., протокол № 10

Программа одобрена НМК факультета ИВТ

протокол № 6 от 28 апреля 2023 г.

Ярославль

1. Цели освоения дисциплины

Целью освоения дисциплины «Архитектура компьютеров» является изучение технических и логических основ вычислительной техники; изучение структурной организации и принципов функционирования основных компонентов компьютеров; освоение принципа программного управления функционированием компьютерных компонентов. Основной направленностью дисциплины является формирование системотехнического мировоззрения, развивающего способность ориентироваться и разбираться в многообразии технических средств и конфигураций современных компьютеров. Студенты должны быть готовы использовать полученные в этой области знания как при изучении смежных дисциплин, так и в профессиональной деятельности

2. Место дисциплины в структуре образовательной программы бакалавриата (магистратуры, специалитета)

Дисциплина «Архитектура компьютера» изучается в 3 учебном семестре на основе знаний, полученных при изучении модуля «Современные цифровые технологии», а также дисциплины «Системное и прикладное программное обеспечение».

Результаты изучения дисциплины востребованы при освоении модулей «Искусственный интеллект», «Технологии передачи и обработки данных», в ходе учебной и производственных практик, а также при подготовке выпускной квалификационной работы.

3. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы бакалавриата (магистратуры, специалитета)

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с Φ ГОС ВО и приобретения следующих знаний, умений, навыков и (или) опыта деятельности:

Формируемая	Индикатор достижения	Перечень
компетенция	компетенции ¹	планируемых результатов обучения
(код и формулировка)	(код и формулировка)	

 1 Для образовательных программ, реализуемым в соответствии с ФГОС ВО, актуализированными с учетом профессиональных стандартов

ОПК-4. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.

ИОПК4.13нает структуру базовых и специализированных информационных технологий, принципы их работы.

ИОПК4.2Умеет выбирать информационные технологии для решения задач профессиональной деятельности и обосновывать свой выбор.

ИОПК4.ЗВладеет навыками применения базовых и специализированных информационных технологий для решения задач профессиональной деятельности.

Знать:

 принципы логической и технической организации вычислительных машин.

Уметь:

 выбирать подходящую конфигурацию аппаратных средств.

Владеть навыками:

– оценки, выбора и конфигурирования технических средств в составе компьютерных систем.

4. Объем, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет <u>3</u> зачетных единиц, <u>108</u> акад. часов.

Nº π/π	Темы (разделы) дисциплины, их содержание	тр	ВК	люча ра(и и в ака	я сам боту с х тру, демич	юстоя студен доемн чески	кость іх час	ную	Формы текущего контроля успеваемости Форма промежуточной аттестации (по семестрам)
		le C	_ K	OHTAK	тная	paoo	та	 ts	
		Семестр	лекции	практические	лабораторные	консультации	аттестационные испытания	самостоятельная работа	
1.	Функциональная организация ЭВМ.	3	4		16			22	
	Архитектура ЭВМ. Принципы фон Неймана. Командный цикл процессора. Система команд процессора: форматы команд; способы адресации; система операций. в том числе с ЭО и ДОТ							42	
2.	Организация устройств ЭВМ.	3	6		8			22	
	Принцип микропрограммного управления. Концепция операционного и управляющего автоматов. Операционный автомат. Управляющий автомат. Концепция многоуровневой памяти. Сверхоперативная память. Виртуальная память.								
	в том числе с ЭО и ДОТ							36	
3.	Базовая архитектура микропроцессорной системы.	3	6		6			22	
	Процессорный модуль. Машина пользователя и система команд.								

	Функционирование						
	основных подсистем						
	микропроцессорной						
	системы: оперативная						
	память; ввод/вывод;						
	прерывания; прямой						
	доступ к памяти.					2.4	
	в том числе с ЭО и ДОТ					34	
١.	Эволюция архитектур						
4.	микропроцессоров и	3	4	6		22	
	микро ЭВМ.						
	Защищенный режим						
	организации памяти:						
	сегментная организация						
	памяти; страничная						
	организация памяти;						
	защита памяти.						
	Мультизадачность.						
	Прерывания и особые						
	случаи. Средства						
	отладки. Увеличение						
	быстродействия						
	процессора: конвейеры;						
	динамический						
	параллелизм; VLIW-						
	архитектура.						
	в том числе с ЭО и ДОТ					32	
	ИТОГО	3	20	36		88	Экзамен
	в том числе с ЭО и ДОТ					144	

В случае реализации дисциплины на разных формах обучения одного направления подготовки (специальности) в рабочей программе дисциплины данная таблица приводится для каждой формы обучения. Перед каждой таблицей указывается соответствующая ей форма обучения.

4.1 Информация о реализации дисциплины в форме практической подготовки

Информация о разделах дисциплины и видах учебных занятий, реализуемых в форме практической подготовки

Nº п/п	Темы (разделы) дисциплины, их содержание	Семестр	Виды учебных занятий, включая самостоятельную работу студентов, и их трудоемкость (в академических часах)	Место проведения занятий в форме практической подготовки
			Контактная работа	подготовки

	лекции	практические	лабораторные	консультации	аттестационные испытания	
ИТОГО						

5. Образовательные технологии, в том числе технологии электронного обучения и дистанционные образовательные технологии, используемые при осуществлении образовательного процесса по дисциплине

В процессе обучения используются следующие образовательные технологии: Вводная лекция — дает первое целостное представление о дисциплине и ориентирует студента в системе изучения данной дисциплины. Студенты знакомятся с назначением и задачами курса, его ролью и местом в системе учебных дисциплин и в системе подготовки в целом. Дается краткий обзор курса, история развития науки и практики, достижения в этой сфере, имена известных ученых, излагаются перспективные направления исследований. На этой лекции высказываются методические и организационные особенности работы в рамках данной дисциплины, а также дается анализ рекомендуемой учебно-методической литературы.

Академическая лекция (или лекция общего курса) – последовательное изложение материала, осуществляемое преимущественно в виде монолога преподавателя. Требования к академической лекции: современный научный уровень и насыщенная информативность, убедительная аргументация, доступная и понятная речь, четкая структура и логика, наличие ярких примеров, научных доказательств, обоснований, фактов.

Практическое занятие — занятие, посвященное освоению конкретных умений и навыков и закреплению полученных на лекции знаний.

Консультации – групповые занятия, являющиеся одной из форм контроля самостоятельной работы студентов. На консультациях по просьбе студентов рассматриваются наиболее сложные моменты в решении задач, которые возникают у них в процессе самостоятельной работы, обсуждаются результаты решения заданий, выполненных студентами самостоятельно.

6. Перечень лицензионного и (или) свободно распространяемого программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине

В процессе осуществления образовательного процесса используются:

- для формирования текстов материалов для промежуточной и текущей аттестации
- программы Microsoft Office, издательская система LaTex;
- для поиска учебной литературы библиотеки ЯрГУ Автоматизированная библиотечная информационная система "БУКИ-NEXT" (АБИС "Буки-Next")
- 7. Перечень современных профессиональных баз данных и информационных справочных систем, используемых при осуществлении образовательного процесса по дисциплине (при необходимости)
 - 1. OC семейства MicrosoftWindows
 - 2. Microsoft Office (ауд.616)
 - 3. Microsoft Office 365(онлайн)
- 8. Перечень основной и дополнительной учебной литературы, ресурсов информационно-телекоммуникационной сети «Интернет», рекомендуемых для освоения дисциплины
- а) основная литература

- 1. Мусихин, А. Г. Архитектура вычислительных машин и систем : учебное пособие / А.
- Г. Мусихин, Н. А. Смирнов. Москва : РТУ МИРЭА, 2021. 271 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/218417 2. Локтюхин, В. Н. Основы архитектуры компьютера : учебное пособие / В. Н. Локтюхин.
 - Рязань : РГРТУ, 2011. 56 с. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168133
- 3. Гребенников, В. Ф. Архитектура средств вычислительной техники. Общие сведения об ЭВМ. Процессоры и устройства управления: учебное пособие / В. Ф. Гребенников, В. А. Овчеренко. Новосибирск: НГТУ, 2019. 76 с. ISBN 978-5-7782-4003-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152233

б) дополнительная литература

- 1. Мусихин, А. Г. Архитектура вычислительных машин и систем : методические рекомендации / А. Г. Мусихин, Н. А. Смирнов. Москва : РТУ МИРЭА, 2019 Часть 2 2020. 24 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/171453
- 2. Орлов, С.А. Организация ЭВМ и систем : Фундаментальный курс по архитектуре и структуре современных компьютерных средств : учебник для вузов / Цилькер Б.Я., Орлов С.А. 3-е изд. СПб. : Питер, 2015. 685 с.
- 3. Таненбаум, Э. Архитектура компьютера = StructuredComputerOrganization / Таненбаум Э. 5-е изд. СПб. : Питер, 2009. 843 с.
- 4. Бройдо, В.Л.Архитектура ЭВМ и систем : учебник для вузов / Бройдо В.Л., Ильина О.П. 2-е изд. СПб. : Питер, 2009.

в) ресурсы сети «Интернет»

- 1. Электронная библиотека «Университетская библиотека online». URL: http://biblioclub.ru/
- 2. Информационная система «Единое окно доступа к образовательным ресурсам». URL: http://window.edu.ru/
- 3. Образовательный портал Череповецкого государственного университета. URL: https://edu.chsu.ru/
- 4. Гуров В., Чуканов В. Логические и арифметические основы и принципы работы ЭВМ. URL: http://www.intuit.ru/studies/courses/56/56/info.
- 5. Новиков Ю., Скоробогатов П. Основы микропроцессорной техники. URL:http://www.intuit.ru/studies/courses/3/3/info.
- 6. Введение в архитектуру ЭВМ. Элементы операционных систем [Электронный pecypc]. URL: https://stepik.org/course/253/promo?auth=registration (дата обращения 5.05.2019).
- 7. Физические основы информационных технологий [Электронный ресурс]. URL: https://openedu.ru/course/eltech/INFOTECH/ (дата обращения 5.05.2019).

Автор(ы): должность, ученая степень подпись И.О. Фамилия должность, ученая степень подпись И.О. Фамилия

9. Материально-техническая база, необходимая для осуществления образовательного

процесса по дисциплине

Приложение № 1 к рабочей программе дисциплины

« <u>Архитектура компьютеров</u> » наименование дисциплины

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

Перечень оценочных средств

Компетенции	Индикаторы достижения компетенций	Оценочные средства
ОПК-4. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.	ИОПК4.13нает структуру базовых и специализированных информационных технологий, принципы их работы. ИОПК4.2Умеет выбирать информационные технологии для решения задач профессиональной деятельности и обосновывать свой выбор. ИОПК4.3Владеет навыками применения базовых и специализированных информационных технологий для решения задач профессиональной деятельности.	 Задания для выполнения лабораторных работ. Вопросы для защиты лабораторных работ. Задания для самостоятельной работы. Тест. Вопросы к зачету.

1. Типовые контрольные задания и иные материалы, используемые в процессе текущего контроля успеваемости

Образцы заданий для лабораторных работ: Лабораторная работа «Архитектура ЭВМ и система команд»

Ознакомьтесь с архитектурой модели учебной ЭВМ. Составьте таблицу соответствия команд и кодов для своего варианта задания (см. табл.1). Запишите в ОЗУ «программу», состоящую из пяти команд. Команды разместите в последовательных ячейках памяти. При необходимости установите начальное значение в регистре IR. Определите программнодоступные объекты ЭВМ, которые будут изменяться при выполнении введенных команд. Выполните в режиме «Шаг» введенную последовательность команд, фиксируя изменения программно-доступных объектов ЭВМ, содержимое которых изменяется при выполнении данных команд.

No	IR	Команда 1	Команда 2	Команда 3	Команда 4	Команда 5
0	_	RD #20	WR 30	ADD #5	WR @30	JNZ 002
1	000007	IN	MUL #2	WR 10	WR @10	JNS 001
2	_	RD #17	SUB #9	WR 16	WR @16	JNS 001
3	100029	IN	ADD #16	WR 8	WR @8	JS 001
4	_	RD #2	MUL #6	WR 11	WR @11	JNZ 001
5	000016	IN	WR 8	DIV #4	WR @8	JMP 002
6	_	RD #4	WR 11	RD @11	ADD #330	JS 000
7	000000	IN	WR 9	RD @9	SUB #1	JS 001
8	_	RD 4	SUB #8	WR 8	WR @8	JNZ 001
9	100005	IN	ADD #12	WR 10	WR @10	JS 004
10	_	RD 4	ADD #15	WR 13	WR @13	JMP 001
11	000315	IN	SUB #308	WR 11	WR @11	JMP 001
12	_	RD #988	ADD #19	WR 9	WR @9	JNZ 001
13	000017	IN	WR 11	ADD 11	WR @11	JMP 002
14	_	RD #5	MUL #9	WR 10	WR @10	JNZ 001

Лабораторная работа «Принцип микропрограммного управления»

Выполните последовательность команд по своему варианту задания (см. табл.1) в режиме Шаг. Запишите изменения состояния процессора и памяти. Запишите последовательность микрокоманд для следующих команд эмулятора: ADD R3; ADD @R3; ADD @R3+; JRNZ R3, M; JMP M; CALL M; RET: PUSH R3; MOV R4, R2; POP R5.

Лабораторная работа «Программирование разветвляющегося процесса»

Разработайте программу вычисления и вывода значения функции для вводимого из IR значения аргументах (функции и допустимые пределы изменения аргумента приведены в табл. 2, варианты заданий – в табл. 3).

$$y = \begin{cases} F_i(x), & x \ge a \\ F_i(x), & x < a \end{cases}$$

Табл. 2. Функции и допустимые пределы изменения аргумента

k	$F_k(x)$	k	$F_k(x)$
1		5	
2		6	
3		7	
4	$(x+3)^3; -20 \le x \le 20$	8	

Табл. 3. Варианты заданий

Номер варианта	ā	ز	u	Номер варианта	ā	j	L
1	2	1	12	8	8	6	30
2	4	3	-20	9	2	6	25
3	8	4	15	10	5	7	50

4	6	1	12	11	2	4	18
5	5	2	50	12	8	1	12
6	7	3	15	13	7	6	25
7	6	2	11	14	1	4	5

Лабораторная работа «Программирование цикла»

Напишите программу определения заданной характеристики последовательности чисел

 $C_1, C_2, ..., C_n$. Варианты заданий приведены в табл. 4. Запишите программу в мнемокодах, введя ее в поле окна Текст программы. Сохраните набранную программу и произведите компилирование мнемокодов. Загрузите в ОЗУ необходимые константы и исходные данные. Выполните отладку программу.

Табл. 4. Варианты заданий

Номер варианта	Характеристика последовательности чисел ${\mathcal C}_1, {\mathcal C}_2, \dots, {\mathcal C}_n$
1	Количество четных чисел; $n = 10$
2	Номер минимального числа; $n = 8$
3	Произведение всех чисел; $n = 12$
4	Номер первого отрицательного числа; $n=11$
5	Количество чисел, равных C_1 ; $n=6$
6	Количество отрицательных чисел; $n=16$
7	Максимальное отрицательное число; $n=7$
8	Номер первого положительного числа; $n=15$
9	Минимальное положительное число; $n=14$
10	Номер максимального числа; $n=10$
11	Количество нечетных чисел; $n = 12$
12	Количество чисел, меньших C_1 ; $n=8$
13	Разность сумм четных и нечетных элементов массива; $n=11$
14	Отношение сумм четных и нечетных элементов массива; $n=6$

Примечание: под четными (нечетными) элементами массивов понимаются элементы, имеющие четные (нечетные) индексы. Четные числа — элементы массивов, делящиеся без остатка на 2.

Лабораторная работа «Подпрограммы и стек»

Составьте программу для учебной ЭВМ для решения следующей задачи: три массива в памяти заданы начальными адресами и длинами, вычислите и выведите на устройство вывода среднее арифметическое параметров этих массивов. Параметры определяются заданием к предыдущей лабораторной работе, а соответствие между номерами вариантов заданий устанавливается по табл. 5. Загрузите в ОЗУ необходимые константы и исходные данные. Выполните программу.

Табл.5. Соответствие между номерами заданий

Номер варианта														
предыдущего	1	2	3	4	5	6	7	8	9	10	11	12	13	14
задания														

Номер варианта	5	7	13	11	9	12	1	10	14	3	6	8	2	4
данного задания		_					_	-0					_	ĺ - I

Лабораторная работа «Принципы работы кэш-памяти»

В качестве задания предлагается программа (табл. 6), которую необходимо выполнить с подключенной кэш-памятью (размером 4 и 8 ячеек) в шаговом режиме для следующих двух вариантов алгоритмов замещения (табл. 7).

Табл. 6. Варианты задания

N₂	Номера команд программы							
варианта	1	2	3	4	5	6	7	
1	RD #12	WR 10	WR @10	ADD 12	WR R0	SUB 10	PUSH R0	
2	RD #65	WR R2	MOV R4,R2	WR 14	PUSH R2	POP R3	CALL 002	
3	RD #16	SUB #5	WR 9	WR @9	WR R3	PUSH R3	POP R4	
4	RD #99	WR R6	MOV R7,R6	ADD R7	PUSH R7	CALL 006	POP R8	
5	RD #11	WR R2	WR -@R2	PUSH R2	CALL 005	POP R3	RET	
6	RD #19	SUB #10	WR 9	ADD #3	WR @9	CALL 006	POP R4	
7	RD #6	CALL 006	WR 11	WR R2	PUSH R2	RET	JMP 002	
8	RD #8	WR R2	WR @R2+	PUSH R2	POP R3	WR -@R3	CALL 003	
9	RD #13	WR 14	WR @14	WR @13	ADD 13	CALL 006	RET	
10	RD #42	SUB #54	WR 16	WR @16	WR R1	ADD @R1+	PUSH R1	
11	RD #10	WR R5	ADD R5	WR R6	CALL 005	PUSH R6	RET	
12	JMP 006	RD #76	WR 14	WR R2	PUSH R2	RET	CALL 001	

Примечание: не следует рассматривать заданную последовательность команд как фрагмент программы. Некоторые конструкции, например, PUSH R6, RET в общем случае не возвращает программу в точку вызова подпрограммы. Такие группы команд введены в задание для того, чтобы обратить внимание на особенности функционирования стека.

Табл. 7. Пояснения к вариантам задания

Номера вариантов	Режим записи	Алгоритм замещения		
	Сквозная	С3, без учета бита записи		
1, 7, 11	Обратная	О, с учетом бита записи		
	Сквозная	БИ, без учета бита записи		
2, 5, 9	Обратная	О, с учетом бита записи		
	Сквозная	О, без учета бита записи		
3, 6, 12	Обратная	СЗ, с учетом бита записи		
	Сквозная	БИ, без учета бита записи		
4, 8, 10	Обратная	БИ, с учетом бита записи		

Лабораторная работа «Программирование внешних устройств, прерывания»

Выполните свой вариант задания (табл. 8) двумя способами — сначала в режиме программного контроля, далее модифицируйте программу таким образом, чтобы события обрабатывались в режиме прерывания программы. Поскольку "фоновая" (основная) задача для этого случая в заданиях отсутствует, роль ее может сыграть "пустой цикл":

M: NOP NOP JMPM

Табл. 8. Варианты заданий

	1		Табл. 8. Варианты заданий
№ варианта	Задание	Используемые ВУ	Пояснения
1	Ввод пятиразрядных чисел в ячейки ОЗУ	Клавиатура	Программа должна обеспечивать ввод последовательности ASCIIкодов десятичных цифр (не длиннее пяти), перекодировку в «8421», упаковку в десятичное число (первый введенный символ — старшая цифра) и размещение в ячейке ОЗУ. ASCII-коды не-цифр игнорировать.
2	Программа ввода символов с клавиатуры с выводом на дисплей	Клавиатура, дисплей, таймер	Очистка буфера клавиатуры после ввода 50 символов или каждые 10 с.
3	Вывод на дисплей трех текстов, хранящихся в памяти, с задержкой	Дисплей, таймер	Первый текст выводится сразу при запуске программы, второй — через 15 с, третий — через 20 с после второго.
4	Вывод на дисплей одного из трех текстовых сообщений, в зависимости от нажатой клавиши	Клавиатура, дисплей	<1>— вывод на дисплей первого текстового сообщения, <2> — второго, <3> — третьего, остальные символы — нет реакции.
5	Выбирать из потока ASCII-кодов только цифры и выводить их на дисплей	Клавиатура, дисплей, тоногенератор	Вывод каждой цифры сопровождается коротким звуковым сигналом.
6	Выводить на дисплей каждый введенный с клавиатуры символ, причем цифру выводить «в трех экземплярах»	Клавиатура, дисплей, тоногенератор	Вывод каждой цифры сопровождается троекратным звуковым сигналом.

7	Селективный ввод символов с клавиатуры	Клавиатура, дисплей	Все русские буквы, встречающиеся в строке ввода — в верхнюю часть экрана дисплея (строки 1—4), все цифры — в нижнюю часть экрана (строки 5—8), остальные символы не выводить.
8	Вывод содержимого заданного участка памяти на дисплей посимвольно с заданным промежутком времени между выводами символов	Дисплей, таймер	Остаток от деления на 256 трех младших разрядов ячейки памяти рассматривается как ASCII-код символа. Начальный адрес памяти, длина массива вывода и промежуток времени — параметры подпрограммы.
9	Программа ввода символов с клавиатуры с выводом на дисплей	Клавиатура, дисплей	Очистка буфера клавиатуры после ввода 35 символов.
№ варианта	Задание	Используемые ВУ	Пояснения
10	Выводить на дисплей каждый введенный с клавиатуры символ, причем заглавную русскую букву выводить «в двух экземплярах»	Клавиатура, дисплей, таймер	Очистка буфера клавиатуры после ввода 48 символов, очистка экрана каждые 15 с.
11	Вывод на дисплей содержимого группы ячеек памяти в числовой форме (адрес и длина группы — параметры подпрограммы)	Дисплей, таймер	Содержимое ячейки распаковывается (с учетом знака), каждая цифра преобразуется в соответствующий ASCII-код и выдается на дисплей. При переходе к выводу содержимого очередной ячейки формируется задержка 10 с.
12	Определить промежуток времени между двумя последовательными нажатиями клавиш	Клавиатура, таймер	Результат выдается на OR. (Учитывая инерционность модели, нажатия не следует производить слишком быстро.)

Образцы вопросов для защиты лабораторных работ: Лабораторная работа «Архитектура ЭВМ и система команд»

- 1. Из каких основных элементов состоит ЭВМ и какие из них представлены в модели?
- 2. Что такое система команд ЭВМ?
- 3. Какие классы команд представлены в модели?
- 4. Какие действия выполняют команды передачи управления?
- 5. Какие способы адресации использованы в модели ЭВМ? В чем отличия между ними?
- 6. Какие ограничения накладываются на способ представления данных в модели?
- 7. Какие режимы работы предусмотрены в модели и в чем отличия между ними?
- 8. Как записать программу в машинных кодах в память модели ЭВМ?
- 9. Какие способы адресации операндов применяются в командах ЭВМ?

Лабораторная работа «Принцип микропрограммного управления»

- 1. Какие микрокоманды связаны с изменением состояния аккумулятора?
- 2. Какие регистры процессора участвуют в реализации этапа выборки команд?
- 3. Укажите назначение регистра команд; аккумулятора; блока РОН?
- 4. Из чего состоит командный цикл?
- 5. Назовите возможные типы машинных циклов.
- 6. Какие действия выполняет ЦП при поступлении запроса прерывания в режиме прерывания?
- 7. Какие из этапов цикла команды являются обязательными для всех команд?
- 8. Местоположение какого из этапов цикла команды в общей их последовательности в принципе может быть изменено?

Лабораторная работа «Программирование разветвляющегося процесса»

- 1. К какому типу архитектуры BM относится программная учебная модель ЭВМ и почему?
- 2. Какие виды команд условного перехода обычно доминируют в реальных программах?
- 3. Как работают команды передачи управления?
- 4. Укажите местонахождение операнда с прямой адресацией?
- 5. Объясните, как определяется значение операнда с непосредственной адресацией.

Лабораторная работа «Программирование цикла»

- 1. Какие функции в вычислительной машине выполняет устройство управления?
- 2. Чем отличается аккумулятор от других регистров процессора?
- 3. Каким образом определяется адрес операнда с косвенной адресацией?
- 4. Дайте определение понятию «цикл».
- 5. Какие виды циклических структур вы знаете?
- 6. Как организовать цикл в программе?
- 7. Что такое параметр цикла?

Лабораторная работа «Подпрограммы и стек»

- 8. Дайте определение стека.
- 9. Каково назначение стека?
- 10. Какие типы стековой памяти вы знаете?
- 11. Объясните назначение регистра SP.
- 12. Какие операции выполняет процессор по командам CALL, RET, PUSH, POP, PUSH A, POP A?

Лабораторная работа «Принципы работы кэш-памяти»

- 1. В чем смысл включения кэш-памяти в состав ЭВМ?
- 2. Какому требованию должен отвечать «идеальный» алгоритм замещения содержимого кэш-памяти?

- 3. В какую ячейку кэш-памяти будет помещаться очередное слово, если свободные ячейки отсутствуют?
- 4. Как работает кэш-память в режиме обратной записи? Сквозной записи?
- 5. Какие алгоритмы замещения ячеек кэш-памяти вам известны?
- 6. Какие факторы влияют на выбор емкости кэш-памяти и размера блока?
- 7. В чем состоит принцип временной локальности?
- 8. В чем состоит принцип пространственной локальности?
- 9. Сравните два вида кэш-памяти: с прямым отображением и полностью ассоциативную.

Лабораторная работа «Программирование внешних устройств, прерывания»

- 1. При каких условиях устанавливается и сбрасывается флаг готовности клавиатуры RD?
- 2. Возможно ли в блоке таймеров организовать работу всех трех таймеров с разной тактовой частотой?
- 3. Как при получении запроса на прерывание от блока таймеров определить номер таймера, достигшего состояния 99 999 (00 000)?
- 4. Какой текст окажется на экране дисплея, если после нажатия в окне обозревателя дисплея кнопки Очистить и загрузки по адресу CR (11) константы #10 вывести по адресу DR (10) последовательно пять ASCII-кодов русских букв A, Б, В, Г, Д?
- 5. В какой области памяти модели ЭВМ могут располагаться программы обработчики прерываний?
 - 2. Список вопросов и (или) заданий для проведения промежуточной аттестации

Образцы заданий для самостоятельной работы:

- 1. Изучите разделы «Введение. Принципы построения ЭВМ», «Введение в язык ассемблера» онлайн курса «Введение в архитектуру ЭВМ. Элементы операционных систем» на платформе Stepik (URL: https://stepik.org/course/253/promo?auth=registration (дата обращения 24.05.2022)).
- 2. Подготовьте отчет по проделанной работе.

Примерный

тест <u>Задание #1</u>

Bonpoc:

Первая ЭВМ называлась...

Выберите один из 5 вариантов ответа:

- 1) ЭНИАК
- 2) ЭДВАК
- 3) ЭДСАК
- 4) Mapк-1
- 5) БЭСМ

Задание #2

Bonpoc:

Элементной базой третьего поколения ЭВМ являются...

Выберите один из 5 вариантов ответа:

- 1) интегральные схемы
- 2) полупроводники
- 3) электронные лампы
- 4) большие интегральные схемы
- 5) транзисторы

Задание #3

Bonpoc:

Среди предложенных ниже вариантов выберите названия классов вычислительной техники по принципу действия.

Выберите несколько из 7 вариантов ответа:

- 1) Аналоговая
- 2) Гибридная
- 3) Цифровая
- 4) Электронная
- 5) Двоичная
- 6) Десятичная
- 7) Механическая

Задание #4

Bonpoc:

Какое из понятий "компьютер" или "ЭВМ" является более широким?

Выберите один из 3 вариантов

ответа: 1) Эти понятия равны.

- 2) Понятие "компьютер" более широкое.
- 3) Понятие "ЭВМ" более широкое.

Задание #5

Bonpoc:

К микро-ЭВМ относятся...

Выберите несколько из 4 вариантов ответа:

- 1) Суперкомпьютеры
- 2) Мэнфреймы
- 3) ΠK
- 4) Специализированные рабочие станции

Задание #6

Bonpoc:

Машина фон Неймана содержала...

Выберите несколько из 6 вариантов ответа:

- 1) Устройство управления
- 2) Арифметико-логическое устройство

- 3) Звуковую карту
- 4) Память
- 5) Винчестер
- 6) Видеокарту

Задание #7

Bonpoc:

Среди приведенных ниже терминов выберите названия принципов фон Неймана.

Выберите несколько из 7 вариантов ответа:

- 1) Двоичного кодирования
- 2) Однородности памяти
- 3) Программного управления
- 4) Адресности
- 5) Аппаратной совместимости
- 6) Десятичного кодирования
- 7) Многопоточности

Задание #8

Bonpoc:

Среди приведенных ниже названий выберите названия основных функциональных блоков ПК.

Выберите несколько из 7 вариантов ответа:

- 1) Центральный процессор
- 2) Блок основной памяти
- 3) Блок периферийных устройств
- 4) Блок интерфейса
- 5) Блок вспомогательной памяти
- 6) Блок данных
- 7) Блок программы

Задание #9

Bonpoc:

Процессор включает в себя...

Выберите несколько из 5 вариантов ответа:

- 1) Операционное устройство
- 2) Устройство управления
- 3) Устройство памяти
- 4) Устройство пересылки команд
- 5) Устройство пересылки данных

Задание

<u>#10</u>

Bonpoc:

Операционное устройство центрального процессора ...

Выберите один из 3 вариантов ответа:

1) управляет процессом выполнения команд

- 2) выполняет команды пересылки данных, арифметические, логические, битовые операции и др. команды, входящие в систему команд процессора
- 3) организует хранение команд и данных, выполняемых процессором

Задание

#11

Bonpoc:

К основным характеристикам процессора не относятся...

Выберите несколько из 5 вариантов ответа:

- 1) разрядность
- 2) число вычислительных ядер
- 3) тактовая частота
- 4) скорость обновления регистров
- 5) частота считывания/записи

Задание

#12

Bonpoc:

К основной памяти относятся...

Выберите несколько из 5 вариантов ответа:

- 1) O3Y
- 2) ПЗУ
- 3) винчестер
- 4) магнитные диски
- 5) оптические диски

Задание

#13

Bonpoc:

К характеристикам оперативной памяти не относятся...

Выберите несколько из 4 вариантов ответа:

- 1) тип памяти
- 2) частота считывания или записи
- 3) наличие кэш-памяти
- 4) разрядность

Задание

#14

Bonpoc:

Периферийными называются устройства, ...

Выберите один из 4 вариантов ответа:

- 1) не обладающие системными ресурсами, используемыми для обмена данными
- 2) к которым процессор может обращаться непосредственно
- 3) находящиеся внутри системного блока
- 4) находящиеся вне системного блока

Задание

#15

Bonpoc:

Из перечисленных ниже устройств к устройствам внешней памяти относятся ...

Выберите несколько из 4 вариантов ответа:

- 1) накопители на жестких дисках
- 2) накопители на оптических дисках
- 3) ПЗУ
- 4) O3У

Задание

#16

Bonpoc:

К интерфейсным средствам относятся...

Выберите несколько из 7 вариантов ответа:

- 1) шины
- 2) системная логика
- 3) конструктивные интерфейсные средства
- 4) кэш-память
- 5) оперативная память
- 6) центральный процессор
- 7) периферийные устройства

Задание

#17

Bonpoc:

Разрядность шины адреса определяет...

Выберите один из 4 вариантов ответа:

- 1) максимальный объем адресуемой памяти
- 2) возможные команды, выполняемые процессором
- 3) объем адресуемой ячейки памяти
- 4) разрядность операндов

<u>Задание</u>

<u>#18</u>

Bonpoc:

Шины расширения предназначены для...

Выберите один из 3 вариантов ответа:

- 1) подключения адаптеров и контроллеров периферийных устройств к системной плате 2) передачи управляющих сигналов процессора
- 3) выборки команд, поступающих из ОЗУ или ПЗУ, в устройство управления процессора

Задание

#19

Bonpoc:

Набор микросхем логики обеспечивает...

Выберите один из 4 вариантов ответа:

- 1) обмен данными между центральным процессором и периферийными устройствами
- 2) передачу управляющих сигналов, задающих режим работы центрального процессора
- 3) выполнение логических операций в процессоре
- 4) передачу управляющих сигналов, задающих режим работы памяти (считывание/запись)

Задание

#20

Bonpoc:

К конструктивным интерфейсным средствам относятся...

Выберите несколько из 6 вариантов ответа:

- 1) сокеты
- 2) чипсет
- 3) порты
- 4) контроллеры
- 5) слоты расширения
- 6) адаптеры

Задание

#21

Bonpoc:

Сенсорный экран - устройство, реагирующее на ...

Выберите один из 4 вариантов ответа:

- 1) прикосновение
- 2) освещенность
- 3) звук
- 4) перемещение

<u>Задание</u>

#22

Bonpoc:

К координатным устройствам с возможность указания абсолютной позиции не относится...

Выберите один из 4 вариантов ответа:

- 1) графический планшет
- 2) световое перо
- 3) мышь
- 4) сенсорный экран

Задание

<u>#23</u>

Bonpoc:

К основным характеристикам мониторов не относится...

Выберите один из 4 вариантов ответа:

- 1) разрешение
- 2) возможная длина изображения
- 3) размер экрана
- 4) глубина изображения

Задание

<u>#24</u>

Bonpoc:

Среди предложенных ниже терминов выберите названия классов принтеров по способу переноса изображения на носитель.

Выберите несколько из 5 вариантов ответа:

- 1) беспроводные
- 2) сублимационные
- 3) монохромные
- 4) лазерные
- 5) твердочернильные

Задание

<u>#25</u>

Bonpoc:

К устройствам ввода графической информации не относится...

Выберите один из 4 вариантов ответа:

- 1) веб-камера
- 2) плоттер
- 3) сканер
- 4) цифровой фотоаппарат

Задание

<u>#26</u>

Bonpoc:

В манипуляторе «мышь» могут быть использованы ... датчики перемещения.

Выберите несколько из 5 вариантов ответа:

- 1) шаровые
- 2) оптические
- 3) электронные
- 4) гироскопические
- 5) магнитные

Задание

<u>#27</u>

Bonpoc:

Микрофон - устройство ввода, преобразующее ...

Выберите один из 4 вариантов ответа:

- 1) колебания электрического тока в звуковые колебания
- 2) звуковые колебания в колебания электрического тока

- 3) давление на мембрану в цифровой сигнал
- 4) цифровые сигналы в звуковые колебания

<u>Задание</u>

#28

Bonpoc:

Из перечисленных ниже устройств памяти выберите те, которые непосредственно взаимодействуют с процессором.

Выберите несколько из 3 вариантов ответа:

- 1) O3Y
- 2) CO3У
- 3) B3Y

Задание

#29 Bonpoc:

Среди перечисленных ниже вариантов выберите классы СОЗУ по способу доступа к хранимой информации.

Выберите несколько из 4 вариантов ответа:

- 1) с прямым доступом
- 2) с ассоциативным доступом
- 3) с косвенным доступом
- 4) без доступа

Задание

#30

Bonpoc:

Как называется правило, по которому при возникновении страничного сбоя выбирается страница для удаления из ОЗУ?

Выберите один из 4 вариантов

ответа: 1) Алгоритм замещения

- 2) Эвристический алгоритм удаления
- 3) Алгоритм поиска страницы 4) Алгоритм сегментов

Вопросы к зачету:

- 1. Архитектура ЭВМ.
- 2. Принципы фон Неймана.
- 3. Командный цикл процессора.
- 4. Форматы команд процессора.
- 5. Способы адресации.
- 6. Система операций.
- 7. Принцип микропрограммного управления.
- 8. Концепция операционного и управляющего автоматов.
- 9. Операционный автомат.
- 10. Управляющий автомат.
- 11. Концепция многоуровневой памяти.

- 12. Сверхоперативная память.
- 13. Виртуальная память.
- 14. Процессорный модуль.
- 15. Машина пользователя и система команд.
- 16. Функционирование основных подсистем микропроцессорной системы, оперативная память.
- 17. Функционирование основных подсистем микропроцессорной системы, организация ввода/вывода.
- 18. Прерывания.
- 19. Прямой доступ к памяти.
- 20. Сегментная организация памяти.
- 21. Страничная организация памяти.
- 22. Защита памяти.
- 23. Мультизадачность.
- 24. Конвейеры.
- 25. Динамический параллелизм.
- 26. VLIW-архитектура.

Уровни оценки компетенций следующие: базовый – 55-69 баллов, повышенный – 70-100 баллов.

Преподаватель проводит систематический контроль знаний студентов, ориентируясь на перечень вопросов для проведения зачета/экзамена.

Критерии оценки лабораторных работ занятий/самостоятельной работы студента (от 0 до 10 баллов): } 9-10 баллов выставляется студенту, если работа выполнена самостоятельно и полностью верно; представлен отчет, содержащий результаты выполнения заданий работы и ответы на контрольные вопросы; студент анализирует результаты, полученные в ходе выполнения работы, делает выводы.

- 7-8 баллов выставляется студенту, если работа выполнена самостоятельно, в целом правильно, но имеются некоторые неточности в выполнении заданий или ответах на контрольные вопросы; представлен отчет, содержащий результаты выполнения заданий и ответы на контрольные вопросы; студент анализирует результаты, полученные в ходе выполнения работы, делает выводы.
- 5-6 баллов выставляется студенту, если работа выполнена самостоятельно, в целом правильно, но имеются некоторые неточности в выполнении заданий или ответах на контрольные вопросы; представлен отчет, содержащий результаты выполнения заданий лабораторной работы и ответы на контрольные вопросы; студент испытывает затруднения при проведении анализа результатов, полученных в ходе выполнения лабораторной работы, и формулировке выводов.
- 3-4 *балла* выставляется студенту, если студент не до конца справился с заданием, не совсем верно ответил на контрольные вопросы, однако оформил отчет по результатам работы.

- **1-2 балла** выставляется студенту, если студент не до конца справился с заданием, не совсем верно ответил на контрольные вопросы, не оформил отчет по результатам работы.
- **0 баллов** выставляется студенту, если студент не справился с заданием, неверно ответил на представленные вопросы.

Ответ на зачете/экзамене оценивается исходя из 40 баллов (максимум). Билет содержит теоретический вопрос и практическое задание, преподаватель может задавать дополнительные вопросы. Полный ответ на основной вопрос оценивается максимум в 20 баллов, предполагает свободное изложение (не чтение) всего необходимого материала, ответы студента на уточняющие вопросы, если они есть. Правильный ответ на дополнительный вопрос оценивается максимум в 5 баллов. Правильное выполнение практического задания оценивается в 20 баллов.

Приложение № 2 к рабочей программе дисциплины

«<u>Архитектура компьютеров</u> наименование дисциплины

Методические указания для студентов по освоению дисциплины

Основной формой изложения учебного материала по дисциплине «Архитектура компьютеров» являются лекции, причем в достаточно большом объеме. По ряду тем предусмотрены практические занятия, на которых происходит закрепление лекционного материала путем применения его к конкретным задачам.

Для успешного освоения дисциплины очень важно решение достаточно большого количества задач, как в аудитории, так и самостоятельно в качестве домашних заданий. Примеры решения задач разбираются на лекциях и практических занятиях, при необходимости по наиболее трудным темам проводятся дополнительные консультации. Основная цель решения задач — помочь усвоить фундаментальные понятия и основы архитектуры компьютеров. Для решения всех задач необходимо знать и понимать лекционный материал. Поэтому в процессе изучения дисциплины рекомендуется регулярное повторение пройденного лекционного материала. Материал, законспектированный на лекциях, необходимо дома еще раз прорабатывать и при необходимости дополнять информацией, полученной на консультациях, практических занятиях или из учебной литературы. Большое внимание должно быть уделено выполнению домашней работы. В качестве заданий для самостоятельной работы дома студентам предлагаются задачи, аналогичные разобранным на лекциях и практических занятиях или немного более сложные, которые являются результатом объединения нескольких базовых задач.

Для проверки и контроля усвоения теоретического материала, приобретенных практических навыков в течение обучения проводятся мероприятия текущей аттестации в виде двух контрольных работ и коллоквиума. Также проводятся консультации (при необходимости) по разбору заданий для самостоятельной работы, которые вызвали затруднения. В конце семестра студенты сдают экзамен.

Экзамен принимается по экзаменационным билетам, каждый из которых включает в себя теоретический вопрос и задачу по теме «Сети из функциональных элементов». На самостоятельную подготовку к экзамену выделяется 3 дня, во время подготовки к экзамену предусмотрена групповая консультация. Освоить вопросы, излагаемые в процессе изучения дисциплины «Архитектура компьютеров» самостоятельно студенту крайне сложно. Это связано со сложностью изучаемого материала и большим объемом курса. Поэтому посещение всех аудиторных занятий является совершенно необходимым. Без упорных и регулярных занятий в течение семестра сдать экзамен по итогам изучения дисциплины студенту практически невозможно.