МИНОБРНАУКИ РОССИИ Ярославский государственный университет им. П.Г. Демидова

Кафедра теоретической информатики

Рабочая программа дисциплины

«Архитектура компьютера»

Направление подготовки

01.03.02 Прикладная математика и информатика

Направленность (профиль)

«Программирование и технологии искусственного интеллекта»

Квалификация выпускника

Бакалавр

Форма обучения

очная

Программа рассмотрена на заседании кафедры от 12 апреля 2023 г., протокол № 10

Программа одобрена НМК факультета ИВТ протокол № 6 от 28 апреля 2023 г.

1. Цели освоения дисциплины

Целью освоения дисциплины «Архитектура компьютеров» является изучение технических и логических основ вычислительной техники;изучение структурной организации и принципов функционирования основных компонентов компьютеров; освоение принципа программного управления функционированием компьютерных компонентов.

Основной направленностью дисциплины является формирование системотехнического мировоззрения, развивающего способность ориентироваться и разбираться в многообразии технических средств и конфигураций современных компьютеров. Студенты должны быть готовы использовать полученные в этой области знания как при изучении смежных дисциплин, так и в профессиональной деятельности.

2. Место дисциплины в структуре ОП бакалавриата

Дисциплина «Архитектура компьютеров» относится к вариативной части ОП бакалавриата.

Она основывается на знаниях, полученных слушателями при изучении таких математических дисциплин, как «Дискретная математика», «Основы информатики».

3. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОП бакалавриата

Процесс изучения дисциплины направлен на формирование следующих элементов компетенций в соответствии с ФГОС ВО, ОП ВО и приобретения следующих знаний, умений, навыков и (или) опыта деятельности:

Формируемая компетенция (код и формулировка)	Индикатор достижения компетенции (код и формулировка)	Перечень планируемых результатов обучения							
Профессиональные компетенции									
ОПК -4 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.	ОПК – 4.1 Демонстрирует навыки использования основных методов передачи, обработки и хранения информации; ОПК – 4.2 Способен рационально выбрать программный продукт в зависимости от решения поставленной задачи.	Знать: — принципы логической и технической организации вычислительных машин. Уметь: — выбирать подходящую конфигурацию аппаратных средств. Владеть навыками: — оценки, выбора и конфигурирования технических средств в составе компьютерных систем.							

4. Объем, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зач.ед., 108акад.час.

№ п/п	Темы (разделы) дисциплины, их содержание	Семестр	Виды учебных занятий, включая самостоятельную работу студентов, и их трудоемкость (в академических часах)				Формы текущего контроля успеваемости Форма промежуточной аттестации (по семестрам)		
			10	Контактная работа					
1	Общие принципы	3	2 лекции	практические	лабораторные	консультации	аттестационны испытания	самостоятельная работа	
	функционирования компьютеров								
2	Представление информации в вычислительных системах. Структуры данных	3	2					4	
3	Оперативная память	3	2					2	
4	Центральный процессор	3	4					2	
5	Системная шина	3	2					2	
6	Жесткий диск	3	4					2	
7	Видеосистема	3	2					2	
8	Сети из функциональных элементов	3		18		4		17	Коллоквиум
		3	10	10					Экзамен
	Всего за 3 семестр		18	18		4		32	Экзамен
	Всего		18	18		4		32	

Содержание разделов дисциплины:

Тема 1. Общие принципы функционирования компьютеров.

Архитектура фон Неймана. Вычислительные системы. Структура, архитектура. Открытые и замкнутые системы. Функционирование ЭВМ. Процесс и поток.

Тема 2. Представление информации в вычислительных системах. Структуры данных.

Представление числовой информации. Представление различных видовинформации (кроме числовой) в компьютере. Структуры данных.

Тема 3. Оперативная память.

Классификация элементов памяти. Физические принципы построения. Матричная организация элементов памяти. Кэширование памяти. Архитектура кэш-памяти.

Тема 4. Центральный процессор.

Исполнение программного кода. Переключение задач и виртуальные машины. Защищённый режим и виртуальная память. Архитектура и микроархитектура процессоров. Конвейеризация. Режимы работы процессоров. Архитектурные регистры и типы данных. Набор инструкций. События — прерывания и исключения. Эффективный адрес и преобразование адресов. Страничная трансляция адресов и виртуальная память. Мультипроцессорные и избыточные системы.

Тема 5. Системная шина.

Информационная магистраль первого поколения — шина ISA.Информационная магистраль второго поколения — шина PCI.Информационная магистраль третьего поколения — шина PCI-Express.

Тема 6. Жесткий диск.

Принципы магнитной записи и физическое устройство жёсткого диска. Системная организация HDD. Интерфейсы устройств хранения. RAID-массивы. Логическая структура дисков. Файловая система. SSD-накопитель.

Тема 7. Видеосистема.

Тема 8.Сети из функциональных элементов.

5. Образовательные технологии, используемые при осуществлении образовательного процесса по дисциплине

В процессе обучения используются следующие образовательные технологии:

Вводная лекция — дает первое целостное представление о дисциплине и ориентирует студента в системе изучения данной дисциплины. Студенты знакомятся с назначением и задачами курса, его ролью и местом в системе учебных дисциплин и в системе подготовки в целом. Дается краткий обзор курса, история развития науки и практики, достижения в этой сфере, имена известных ученых, излагаются перспективные направления исследований. На этой лекции высказываются методические и организационные особенности работы в рамках данной дисциплины, а также дается анализ рекомендуемой учебно-методической литературы.

Академическая лекция (или лекция общего курса) — последовательное изложение материала, осуществляемое преимущественно в виде монолога преподавателя. Требования к академической лекции: современный научный уровень и насыщенная информативность, убедительная аргументация, доступная и понятная речь, четкаяструктура и логика, наличие ярких примеров, научных доказательств, обоснований, фактов.

Практическое занятие — занятие, посвященное освоению конкретных умений и навыков и закреплению полученных на лекции знаний.

Консультации — групповые занятия, являющиеся одной из форм контроля самостоятельной работы студентов. На консультациях по просьбе студентов рассматриваются наиболее сложные моменты в решении задач, которые возникают у них в процессе самостоятельной работы, обсуждаются результаты решения заданий, выполненных студентами самостоятельно.

6. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения и информационных справочных систем (при необходимости)

В процессе осуществления образовательного процесса используются:

- для формирования текстов материалов для промежуточной и текущей аттестации
 программы Microsoft Office, издательская система LaTex;
- для поиска учебной литературы библиотеки ЯрГУ Автоматизированная библиотечная информационная система "БУКИ-NEXT" (АБИС "Буки-Next")

7. Перечень основной и дополнительной учебной литературы, ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- а) основная:
- 1. Таненбаум, Э., Архитектура компьютера / Э. Таненбаум ; пер. с англ. Е. Матвеев 6-е изд., СПб., Питер, 2021, 811с
- 2. Лоханин, М. В., Архитектура современного компьютера : учеб. пособие для вузов / М. В. Лоханин ; Яросл. гос. ун-т, Ярославль, ЯрГУ, 2011, 96c

- 3. Лоханин М. В. Архитектура современного компьютера [Электронный ресурс]: учеб. пособие для вузов. / М. В. Лоханин; Яросл. гос. ун-т им. П. Г. Демидова, Науч.-метод. совет ун-та Ярославль: ЯрГУ, 2011. 96 с. http://www.lib.uniyar.ac.ru/edocs/iuni/20110710.pdf
 - 4. Рублев В. С. Элементы теории графов. Деревья, сети. Ярославль: ЯрГУ, 2010.
 - б) дополнительная:
- 1. Гуров, В. В., Основы теории и организации ЭВМ : учеб. пособие для вузов / В. В. Гуров, В. О. Чуканов, М., Интернет-Унт Информационных Технологий : БИНОМ. Ла, 2006, 269с
- 2. Курчидис В. А., Магдалинский С. М., Асеев Д. И. Функционально-логические узлы ЭВМ. Ярославль: ЯрГУ, 1991.
 - в) ресурсы сети «Интернет»
 - 1. Электронная библиотека учебных материалов ЯрГУ

(http://www.lib.uniyar.ac.ru/opac/bk_cat_find.php).

- 2. Электронно-библиотечная система «Юрайт» (https://urait.ru/).
- 3. Электронно-библиотечная система «Лань» (https://e.lanbook.com/).

8. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине включает в свой состав специальные помещения:

- учебные аудитории для проведения занятий лекционного типа ипрактических занятий;
 - учебные аудитории для проведения групповых и индивидуальных консультаций,
- учебные аудитории для проведения текущего контроля и промежуточной аттестации;
 - помещения для самостоятельной работы;
- помещения для хранения и профилактического обслуживания технических средств обучения.

Специальные помещения укомплектованы средствами обучения, служащими для представления учебной информации большой аудитории.

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, хранящиеся на электронных носителях и обеспечивающие тематические иллюстрации, соответствующие рабочим программам дисциплин.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

Число посадочных мест в лекционной аудитории больше либо равно списочному составу потока, а в аудитории для практических занятий — списочному составу группы обучающихся.

Автор:		
Доцент кафедры теоретической информатики, к.фм.н.	(подпись)	А. В. Смирнов

Приложение №1 к рабочей программе дисциплины «Архитектура компьютеров»

Фонд оценочных средств для проведения текущей и промежуточной аттестации студентов по дисциплине

1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

1.1 Контрольные задания и иные материалы, используемые в процессе текущей аттестации

Коллоквиум

- **1.** Четыре партии получили соответственно 49%, 25%, 24% и 2% мест в парламенте. Для принятия закона необходимо, чтобы за него проголосовало не меньше 51% депутатов. Описать с помощью булевой функции и реализовать в виде сети из функциональных элементов процедуру голосования, если известно, что внутри каждой партии все депутаты голосуют одинаково. Оценить сложность полученной сети.
- **2.** Для кодирования входного алфавита $\Sigma = \{a_1, \dots, a_n\}$ используются только числа, являющиеся степенями тройки. Реализовать сеть шифратора для n=4, оценить сложность полученной сети. В случае произвольного n оценить сложность сети с точностью до упрощения СДНФ.
- **3.** Для входного 8-разрядного числа x выходной разряд z равен 1, если удвоенная сумма четырехразрядных чисел, на которые можно разделить входной код, больше исходного кода x. В противном случае z равен 0. Реализовать сеть из функциональных элементов, оценить ее сложность для n=8 и в случае произвольного n.

Способы решения задач коллоквиума рассмотрены в книгах [1]–[3] из списка основной литературы.

Кроме того, результаты решения заданийобсуждаются на консультациях по просьбе студентов.

1.2 Список вопросов для проведения промежуточной аттестации Список вопросов к экзамену:

- 1. Архитектура фон Неймана.
- 2. Вычислительные системы. Структура, архитектура. Открытые и замкнутые системы.
- 3. Функционирование ЭВМ. Процесс и поток.
- 4. Представление числовой информации.
- 5. Представление различных видов информации (кроме числовой) в компьютере. Структуры данных.
- 6. Классификация элементов памяти. Физические принципы построения.
- 7. Матричная организация элементов памяти.
- 8. Кэширование памяти.
- 9. Архитектура кэш-памяти.
- 10. Исполнение программного кода. Переключение задач и виртуальные машины. Защищённый режим и виртуальная память.
- 11. Архитектура и микроархитектура процессоров. Конвейеризация.

- 12. Режимы работы процессоров.
- 13. Архитектурные регистры и типы данных.
- 14. Набор инструкций. События прерывания и исключения.
- 15. Эффективный адрес и преобразование адресов.
- 16. Страничная трансляция адресов и виртуальная память.
- 17. Мультипроцессорные и избыточные системы.
- 18. Информационная магистраль первого поколения шина ISA.
- 19. Информационная магистраль второго поколения шина РСІ.
- 20. Информационная магистраль третьего поколения шина PCI-Express.
- 21. Принципы магнитной записи и физическое устройство жёсткого диска.
- 22. Системная организация HDD. Интерфейсы устройств хранения.
- 23. RAID-массивы.
- 24. Логическая структура дисков. Файловая система.
- 25. SSD-накопитель.
- 26. Видеосистема.

Темы практических заданий к экзамену:

1. Представление информации в вычислительных системах:

Представление числовой информации. Двоичная система счисления и вычисления в ней. Прямой, обратный, дополнительный и модифицированный дополнительный код.

2.Сети из функциональных элементов:

Синтез сетей из функциональных элементов. Оценка сложности и оптимизация.

Макет экзаменационного билета

макет экзаменационного оилета
Утверждаю:
Зав. кафедрой
д.фм.н., профессор
В.А. Соколов
«»20_г.
01.03.02 2 курс
ФГБОУ ВО «Ярославский государственный университет им. П.Г. Демидова»
Прикладная математика и информатика
Кафедра теоретической информатики
Дисциплина «Архитектура компьютеров»
Билет № 1
1. Архитектура фон Неймана.
2. Решить задачу.
Для входного 9-разрядного числа x выходной разряд z равен 1, если трехразрядные
нисла, на которые можно разделить входной код, образуют невозрастающую
последовательность. В противном случае z равен 0. Реализовать сеть из функциональных
элементов, оценить ее сложность для $n = 9$ и в случае произвольного n .
ысментов, оценить се сложность для $n = 9$ и в случае произвольного n .
Разработал:
Доцент кафедры дискретного анализа
к.фм.нА.В. Смирнов.
Рассмотрены и одобрены на заседании кафедры
« <u>»</u> 20_ г.
Протокол №

2. Перечень компетенций, этапы их формирования, описание показателей и критериев оценивания компетенцийна различных этапах их формирования, описание шкалы оценивания

2.1. Шкала оцениваниясформированности компетенций и ее описание

Оценивание уровня сформированности компетенций в процессе освоения дисциплины осуществляется по следующейтрехуровневой шкале:

Пороговый уровень - предполагает отражение тех ожидаемых результатов, которые определяют минимальный набор знаний и (или) умений и (или) навыков,полученных студентом в результате освоения дисциплины. Пороговый уровень является обязательным уровнем для студента к моменту завершения им освоения данной дисциплины.

Продвинутый уровень - предполагает способность студента использовать знания, умения, навыки и (или) опыт деятельности, полученные при освоении дисциплины, для решения профессиональных задач. Продвинутый уровень превосходит пороговый уровень по нескольким существенным признакам.

Высокий уровень - предполагает способность студента использовать потенциал интегрированных знаний, умений, навыков и (или) опыта деятельности, полученных при освоении дисциплины, для творческого решения профессиональных задач и самостоятельного поиска новых подходов в их решении путем комбинирования и использования известных способов решения применительно к конкретным условиям. Высокий уровень превосходит пороговый уровень по всем существенным признакам.

2.2. Перечень компетенций, этапы их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования

Код компе-	Форма контроля	Этапы форми- рования (№ темы (раздела)	Показатели оценивания	Шкала и критерии оценивания компетенций на различных этапах их формирования					
тенции				Пороговыйуровень	Продвинутый уровень	Высокийуровень			
Общепро	Общепрофессиональные компетенции								
ОПК-2	Экзамен	1–8	Знать: - основы функционирования компонентов вычислительных машин, принципы аппаратного и программного управления компьютерными компонентами. Уметь: - оценивать техническую конфигурацию, состав и основные характеристики вычислительных машин. Владеть навыками: - синтеза сетей из функциональных элементов.	Знает Решает некоторые	Знает и умеет	Знает, умеет и владеетнавыками			
	Коллоквиум	8	 синтеза сетей из функциональных элементов. 	задачи	задач	Решает все задачи			
Професс	иональные ком	петенции							
ПК-3	Экзамен	1–8	Знать: — принципы логической и технической организации вычислительных машин. Уметь: — выбирать подходящую конфигурацию аппаратных средств. Владеть навыками: — оценки, выбора и конфигурирования технических средств в составе компьютерных систем.	Знает	Знает и умеет	Знает, умеет и владеетнавыками			

3. Методические рекомендации преподавателю по процедуре оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Целью процедуры оценивания является определение степени овладения студентом ожидаемыми результатами обучения (знаниями, умениями, навыками и (или) опытом деятельности).

Процедура оценивания степени овладения студентом ожидаемыми результатами обучения осуществляется с помощью методических материалов, представленных в разделе «Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций»

3.1 Критерии оценивания степени овладения знаниями, умениями, навыками и (или) опытом деятельности, определяющие уровни сформированности компетенций

Пороговый уровень (общие характеристики):

- владение основным объемом знаний по программе дисциплины;
- знание основной терминологии данной области знаний, стилистически грамотное, логически правильное изложение ответа на вопросы без существенных ошибок;
- владение инструментарием дисциплины, умение его использовать в решении стандартных (типовых) задач;
- способность самостоятельно применять типовые решения в рамках рабочей программы лисшиплины;
- усвоение основной литературы, рекомендованной рабочей программой дисциплины;
- знание базовых теорий, концепций и направлений по изучаемой дисциплине;
- самостоятельная работа на практических и лабораторных занятиях, периодическое участие в групповых обсуждениях, достаточный уровень культуры исполнения заданий.

Продвинутый уровень (общие характеристики):

- достаточно полные и систематизированные знания в объёме программы дисциплины;
- использование основной терминологии данной области знаний, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать выводы;
- владение инструментарием дисциплины, умение его использовать в решении учебных и профессиональных задач;
- способность самостоятельно решать сложные задачи (проблемы) в рамках рабочей программы дисциплины;
- усвоение основной и дополнительной литературы, рекомендованной рабочей программой дисциплины;
- умение ориентироваться в базовых теориях, концепциях и направлениях по изучаемой дисциплине и давать им сравнительную оценку;
- самостоятельная работа на практических и лабораторных занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

Высокий уровень (общие характеристики):

- систематизированные, глубокие и полные знания по всем разделам дисциплины;
- точное использование терминологии данной области знаний, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы;
- безупречное владение инструментарием дисциплины, умение его использовать в постановке и решении научных и профессиональных задач;
- способность самостоятельно и творчески решать сложные задачи (проблемы) в рамках рабочей программы дисциплины;

- полное и глубокое усвоение основной и дополнительной литературы, рекомендованной рабочей программой дисциплины;
- умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой дисциплине и давать им критическую оценку;
- активная самостоятельная работа на практических и лабораторных занятиях, творческое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

Оценивание результатов обучения студентов по дисциплине «Архитектура компьютеров» осуществляется по регламенту текущего контроля и промежуточной аттестации.

Текущий контроль в семестре проводится с целью обеспечения своевременной обратной связи, для коррекции обучения, активизации самостоятельной работы студентов.

Текущий контроль проводится в виде контрольной работы и коллоквиума. Критериями оценивания степени овладения умениями и навыками, полученными в результате освоения данной дисциплины, являются следующие:

Критерии оценки контрольной работы

«Отлично» (5 баллов) — ставится за работу, выполненную полностью без ошибок и недочетов. «Хорошо» (4 балла) — ставится за работу, выполненную полностью, но при наличии в ней не более одной ошибки и одного недочета, или не более трех недочетов. «Удовлетворительно» (3 балла) — ставится за работу, если обучающийся правильно выполнил не менее 2/3 всей работы. «Неудовлетворительно» (2 балла) — ставится за работу, если число ошибок и недочетов превысило норму для оценки «3» или правильно выполнено менее 2/3 всей работы.

Критерии оценки коллоквиума:

Оценка «5»

- глубокое и прочное усвоение программного материала;
- полные, последовательные, грамотные и логически излагаемые ответы при видоизменении задания;
 - свободно справляющиеся с поставленными задачами, знания материала;
 - правильно обоснованные принятые решения;
- владение разносторонними навыками и приемами выполнения практических работ.

Оценка «4»

- на вопросы даны в целом верные ответы;
- грамотное изложение, без существенных неточностей в ответе на вопрос;
- правильное применение теоретических знаний;
- владение необходимыми навыками при выполнении практических задач.

Оценка «3»

- усвоение основных элементов материала;
- при ответе допускаются неточности и возможны недостаточно правильные формулировки;
 - нарушение последовательности в изложении программного материала;
- студент в целом ориентируется в тематике учебного курса, но испытывает проблемы с раскрытием конкретных вопросов;
 - затруднения в выполнении практических заданий.

Оценка «2»

- незнание даже основных элементов материала;
- при ответе возникают ошибки;
- затруднения при выполнении практических заданий.

3.2 Описание процедуры выставления оценки

В зависимости от уровня сформированности каждой компетенции по окончании освоения дисциплины студенту выставляется оценка. Для дисциплин, изучаемых в течение нескольких семестров, оценка может выставляться не только по окончании ее освоения, но и в промежуточных семестрах. Вид оценки («отлично», «хорошо»,

«удовлетворительно», «неудовлетворительно», «зачтено», «незачтено») определяется рабочей программой дисциплины в соответствии с учебным планом.

Оценка «отлично» выставляется студенту, у которого каждая компетенция (полностью или частично формируемая данной дисциплиной) сформирована на высоком уровне.

Оценка «хорошо» выставляется студенту, у которого каждая компетенция (полностью или частично формируемая данной дисциплиной) сформирована не ниже, чем на продвинутом уровне.

Оценка «удовлетворительно» выставляется студенту, у которого каждая компетенция (полностью или частично формируемая данной дисциплиной) сформирована не ниже, чем на пороговом уровне.

Оценка «неудовлетворительно» выставляется студенту, у которого хотя бы одна компетенция (полностью или частично формируемая данной дисциплиной) сформирована ниже, чем на пороговом уровне.

Шкала оценивания успеваемости текущего контроля и промежуточной аттестации

В зависимости от уровня сформированности компетенции по окончании освоения дисциплины студенту выставляется оценка по четырехбалльной шкале.

Шкала оценивания результатовколлоквиума Шкала оценивания решения задачи:

0 баллов — полное отсутствие решения; 0.5 балла — частичное выполнение критерия; 0.8 балла — полное выполнение критерия с незначительными ошибками, 1 балл — полное выполнение критерия.

Оценка за коллоквиум выставляется по формуле (оценка_задачи_1 +оценка задачи 2 + 2*оценка задачи 3 + 1) с округлением по стандартным правилам.

Шкала оценивания экзамена

«2» - неудовлетворительно:

Теоретический вопрос: студент не раскрыл теоретический вопрос, на заданные экзаменаторами вопросы не смог дать удовлетворительный ответ.

Практический вопрос: студент не понял смысла задачи, не смог выполнить задания. На заданные экзаменатором вопросы ответил неудовлетворительно, не продемонстрировал сформированность требующихся для выполнения заданий знаний и умений.

«З» - удовлетворительно:

Теоретический вопрос: студент смог с помощью дополнительных вопросов воспроизвести основные положения темы, но не сумел привести соответствующие примеры или аргументы, подтверждающие те или иные положения.

Практический вопрос: студент понял смысл задачи, но смог выполнить задание лишь после дополнительных вопросов, предложенных экзаменатором. При этом на поставленные экзаменатором вопросы не вполне ответил правильно и полно, ноподтвердил ответами понимание вопросов и продемонстрировал отдельные требующиеся для выполнения заданий знания и умения.

«4» - хорошо:

Теоретический вопрос: студент (не допуская ошибок) правильно изложил теоретический вопрос, но недостаточно полно или допустил незначительные неточности, не искажающие суть понятий, теоретических положений, правовых и моральных норм. Примеры, приведенные учеником, воспроизводили материал учебников. На заданные экзаменатором уточняющие вопросы ответил правильно.

Практический вопрос: студент понял смысл задачи, предложенные задания выполнил правильно, но недостаточно полно. На заданные экзаменатором вопросы ответил правильно. Проявил необходимый уровень всех требующихся для выполнения заданий знаний и умений.

«5» - отлично:

Теоретический вопрос: студент полно и правильно изложил теоретический вопрос, привел собственные примеры, правильно раскрывающие те или иные положения, сделал обоснованный вывод;

Практический вопрос: студент полно и правильно выполнил предложенные задания, проявил высокий уровень всех требующихся для выполнения заданий знаний и умений.

Приложение №2 к рабочей программе дисциплины «Архитектура компьютеров»

Методические указания для студентов по освоению дисциплины

Основной формой изложения учебного материала по дисциплине «Архитектура компьютеров» являются лекции, причем в достаточно большом объеме. По ряду тем предусмотрены практические занятия, на которых происходит закрепление лекционного материала путем применения его к конкретным задачам.

Для успешного освоения дисциплины очень важно решение достаточно большого количества задач, как в аудитории, так и самостоятельно в качестве домашних заданий. Примеры решения задач разбираются на лекциях и практических занятиях, при необходимости по наиболее трудным темам проводятся дополнительные консультации. Основная цель решения задач – помочь усвоить фундаментальные понятия и основы архитектуры компьютеров. Для решения всех задач необходимо знать и понимать лекционный материал. Поэтому в процессе изучения дисциплины рекомендуется повторение пройденного лекшионного регулярное материала. Материал, законспектированный на лекциях, необходимо дома еще раз прорабатывать и при необходимости дополнять информацией, полученной на консультациях, практических занятиях или из учебной литературы. Большое внимание должно быть уделено выполнению домашней работы. В качестве заданий для самостоятельной работы дома студентам предлагаются задачи, аналогичные разобранным на лекциях и практических занятиях или немного более сложные, которые являются результатом объединения нескольких базовых задач.

Для проверки и контроля усвоения теоретического материала, приобретенных практических навыков в течение обучения проводятся мероприятия текущей аттестации в виде двух контрольных работ и коллоквиума. Также проводятся консультации (при необходимости) по разбору заданий для самостоятельной работы, которые вызвали затруднения. В конце семестра студенты сдают экзамен.

Экзамен принимается по экзаменационным билетам, каждый из которых включает в себя теоретический вопрос и задачу по теме «Сети из функциональных элементов». На самостоятельную подготовку к экзамену выделяется 3 дня, во время подготовки к экзамену предусмотрена групповая консультация. Освоить вопросы, излагаемые впроцессе изучения дисциплины «Архитектура компьютеров» самостоятельно студенту крайне сложно. Это связано со сложностью изучаемого материала и большим объемом курса. Поэтому посещение всех аудиторных занятий является совершенно необходимым. Без упорных и регулярных занятий в течение семестра сдать экзамен по итогам изучения дисциплины студенту практически невозможно.

Учебно-методическое обеспечение самостоятельной работы студентов по дисциплине

В качестве учебно-методического обеспечения рекомендуется использовать литературу, указанную в разделе № 7 данной рабочей программы.

Для самостоятельного подбора литературы в библиотеке ЯрГУ рекомендуется использовать:

1. Личный кабинет (http://lib.uniyar.ac.ru/opac/bk_login.php) дает возможность получения on-line доступа к списку выданной в автоматизированном режиме литературы, просмотра и копирования электронных версий изданий сотрудников университета (учеб. и метод. пособия, тексты лекций и т.д.) Для работы в «Личном кабинете» необходимо зайти

на сайт Научной библиотеки ЯрГУ с любой точки, имеющей доступ в Internet, в пункт меню «Электронный каталог»; пройти процедуру авторизации, выбрав вкладку «Авторизация», и заполнить представленные поля информации.

- 2. Электронная библиотека учебных материалов ЯрГУ (http://www.lib.uniyar.ac.ru/opac/bk cat find.php) содержит более 2500 полных текстов учебных и учебно-методических материалов по основным изучаемым дисциплинам, изданных в университете. Доступ в сети университета, либо по логину/паролю.
- 3. Электронная картотека «Книгообеспеченность» (http://www.lib.uniyar.ac.ru/opac/bk bookreq find.php) раскрывает учебный фонд научной библиотеки ЯрГУ, предоставляет оперативную информацию о состоянии книгообеспеченности дисциплин основной и дополнительной литературой, а также цикла дисциплин и специальностей. Электронная картотека «Книгообеспеченность» доступна в сети университета и через Личный кабинет.

Примеры выполнения заданий контрольных работ

Примеры выполнения заданий коллоквиума рассматриваются в источниках [1]–[3] из списка основной литературы (см. раздел №7 настоящей программы).

Наиболее сложные моменты в решении задачобсуждаются на консультациях по просьбе студентов.

Задания для самопроверки

Компетенция ОПК-2:

- 1. В чём разница между реальным и защищённым режимом работы процессора?
- 2. Что такое дополнительный код? Как его получить из прямого кода?
- 3. Назовите функциональные элементы, образующие базис сети из функциональных элементов (для случая двоичных входов и выходов).
 - 4. Как оценивается сложность сети из функциональных элементов?
 - 5. Опишите архитектурную модель PCI-Express.

Компетенция ПК-3:

- 1. Сформулируйте пять принципов фон Неймана.
- 2. Что такое RAID-массив?
- 3. Что такое прерывание?
- 4. Что такое кластер в файловой системе?
- 5. Что такое системная шина? В чём состоят основные особенности одношинного и многошинного архитектурного подхода?