МИНОБРНАУКИ РОССИИ Ярославский государственный университет им. П.Г. Демидова

Кафедра теоретической информатики

Рабочая программа дисциплины

«Математическая логика»

Направление подготовки

09.03.03 Прикладная информатика

Направленность (профиль)

«Информационные технологии в цифровой экономике»

Форма обучения очная

Программа рассмотрена на заседании кафедры от 12 апреля 2023 г., протокол № 10

Программа одобрена НМК факультета ИВТ протокол № 6 от 28 апреля 2023 г.

Ярославль

1. Цели освоения дисциплины

Целями дисциплины «Математическая логика» являются приобретение фундаментальных знаний и умений в соответствии с Федеральным государственным образовательным стандартом, содействует фундаментализации образования, развитию логического мышления и формированию математического и общенаучного мировоззрения.

Целью изучения дисциплины является овладение базовыми понятиями и методами математической логики, ознакомление с их применениями в информатике, в частности, для верификации программ, изучение основ теории алгоритмов, установление существования алгоритмически неразрешимых проблем и значение этого фундаментального факта теории алгоритмов для алгоритмической практики и компьютерных наук, ознакомление с базовыми подходами к оценке сложности алгоритмов и задач и некоторыми приемами построения эффективных алгоритмов.

2. Место дисциплины в структуре образовательной программы

Дисциплина «Математическая логика» относится к базовой части ОП бакалавриата. Рассматриваемая дисциплина играет исключительно важную роль для общематематической подготовки бакалавров. При ее изучении существенно используются знания, полученные при изучении математических дисциплин "Математический анализ", "Алгебра и геометрия", "Информатика". Знания, умения и навыки, полученные при изучении дисциплины "Математическая логика и приложения в информатике и компьютерных науках", используются обучаемыми при изучении обще профессиональных и специальных дисциплин математического и компьютерного циклов.

Получаемые в рамках дисциплины знания являются основой понимания последующих курсов, таких как теория формальных языков, теория неклассических логик, логическое программирование и других формально-аксиоматических теорий, лежащих в основе современных информационных прикладных систем.

3. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих элементов компетенций в соответствии с ФГОС ВО, ООП ВО и приобретения следующих знаний, умений, навыков и (или) опыта деятельности:

Формируемая компетенция (код и формулировка)	Индикатор достижения компетенции (код и формулировка)	Перечень планируемых результатов обучения							
Общепрофессиональные компетенции									

ПК-6 Способен использовать математические и естественно-научные методы для решения прикладных задач

ПК-6.1.

Владеет знаниями в области теории и методологии математического моделирования

ПК-6.2. Демонстрирует умение собирать, обрабатывать статистические, экспериментальные, теоретические и т.д. для построения математических моделей, расчетов, конкретных практических выводов. ПК-6.3. Демонстрирует понимание и умение применять на практике математические модели и компьютерные технологии для решения различных задач в области профессиональной деятельности.

Знать: основные понятия, принципиальные результаты и методы математической логики.

Уметь: решать стандартные задачи математической логики.

Владеть навыками: установления выводимости формул в ИВ и ИП, написания программ для машин Тьюринга, оценки временной и емкостной сложности Тьюринговыхалгоритмов

4. Объем, структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 акад. часов.

№ п/п	Темы (разделы) дисциплины, их содержание	естр	Виды учебных занятий, включая самостоятельную работу студентов, и их трудоемкость (в академических часах) Контактная работа					Формы текущего контроля успеваемости Форма промежуточной аттестации (по семестрам)	
		Семестр	лекции	практические	лабораторные	консультации	аттестационные испытания	самостоятельная работа	Формы ЭО и ДОТ (при наличии)
1	Введение.	2	2	4				X	Устный опрос Реферат
2	Логика высказываний и логика предикатов	2	2	5				8	Задания для самостоятельной (домашней) работы Устный опрос
3	Булевы функции.	2	2	5				8	Задания для самостоятельной (домашней) работы Устный опрос
4	Логические исчисления. Исчисление высказываний	2	2	5				8	Задания для самостоятельной (домашней) работы Устный опрос
5	Исчисление предикатов.	2	2	5					Задания для самостоятельной (домашней) работы Устный опрос Реферат Контрольная работа
6	Метод резолюций.	2	2	5				8	Задания для самостоятельной (домашней) работы
7	Применения математической логики в информатике.	2	5	5				5	Задания для самостоятельной (домашней) работы Устный опрос
	итого	2	17	31		2	0.5	52	Экзамен
	ИТОГО		17	34		2	0,5	53	
	в том числе с ЭО и ДОТ								

1.Введение.

Понятие множества. Операции над множествами и их свойства. Соответствия, функции, отношения и их типы. Сравнение мощностей множеств. "наивная" теория множеств — теоремы о счетных множествах, о несчетности множества действительных чисел, о шкале мощностей. Парадоксы. Теория алгоритмов и принципиальные возможности вычислительных машин. Сложность алгоритмов и её значение для практики.

2. Исчисление высказываний

Высказывания как предложения, имеющие истинностное значение. Понятие формальной аксиоматической теории. Исчисление высказываний (ИВ) как пример аксиоматической теории. Понятие и примеры выводимости. Теорема о дедукции. Переформулировка аксиом как правил выводимости. Формализация понятия истинности на основе булевых функций. Связь между выводимостью и истинностью. Решение основных проблем формальной теории ИВ – непротиворечивость, полнота, разрешимость. Проблема разрешимости для других математических теорий.

Язык логики высказываний: алфавит, пропозициональные переменные и пропозициональные связки, формулы. Интерпретации, истинностное значение формулы в интерпретации. Тождественно истинные и выполнимые формулы. Булевы алгебры. Алгебра высказываний и алгебра подмножеств множества как примеры булевых алгебр. Предикаты на множестве и их связь с отношениями. Логические операции над предикатами. Язык логики предикатов: сигнатура, термы и формулы, свободные и связанные вхождения переменных. Интерпретации. Значение замкнутого терма в интерпретации. Истинностное значение замкнутой формулы в интерпретации. Оценки.. Выполнимые, тождественно истинные и тождественно ложные формулы. Равносильность формул, основные соотношения равносильности и их использование для упрощения формул. Предваренные нормальные формы, дизъюнктивные и конъюнктивные нормальные формы.

3. Булевы функции

Алгебра булевых функций как функциональная система с операциями. Теоремы о СДНФ и СКНФ. Теорема о булевских многочленах. Формулы в данном базисе. Теоремы о выразимости и полноте. Базисы замкнутых классов булевых функций. Пример применения к функциональному проектированию – схема двоичного сумматора и инвертора.

Булевы функции. Их представление термами и формулами над заданной системой функций. Представление булевых функций формулами алгебры высказываний и многочленами Жегалкина. Замкнутые классы функций. Критерии полноты для булевых функций. Базисы замкнутых классов булевых функций. Минимизация булевых функций.

4. Логические исчисления. Исчисление высказываний.

Общее понятие о логическом исчислении. Язык, аксиомы и правила вывода исчисления высказываний. Вывод и выводимость формул в исчислении высказываний. Вывод из множества гипотез. Теорема дедукции. Непротиворечивость исчисления высказываний. Задача полноты ИВ.

5. Элементы исчисления предикатов

Алгебра предикатов и интерпретация формул исчисления предикатов (ИП) в данной предметной области. Определение формальной аксиоматической системы ИП. Простейшие примеры выводимости. Общезначимость и выводимость. Непротиворечивость ИП. Пример формулы, тожественно истинной в любой конечной предметной области, но не выводимой. Алгоритмическая неразрешимость проблемы общезначимости формул ИП.

Язык, логические аксиомы и правила вывода исчисления предикатов. Вывод и выводимость формул в исчислении предикатов. Вывод и выводимость формул из множества гипотез. Теорема дедукции. Вспомогательные правила вывода. Эквивалентность формул. Приведение формул к нормальным формам. Теоремы

непротиворечивости и адекватности. Непротиворечивость исчисления предикатов. Теорема К.Геделя о полноте для исчисления предикатов. Элементы теории моделей. Применение исчисления предикатов для записи математических утверждений и для автоматизации доказательства теорем.

6. Метод резолюций.

Применение исчисления предикатов для доказательства теорем. Семантические деревья. Метод резолюции для логики предикатов. Теорема о полноте метода резолюции для логики предикатов. Применение логики предикатов в дедуктивных базах данных и экспертных системах. Методика составления и реализация логических программ.

7. Применения математической логики в информатике.

Логико-математические подходы к верификации программ. Аксиоматическая семантика программ. Триады Хоара. Аксиомы и правила вывода исчисления Хоара. Корректность исчисления Хоара относительно операционной семантики.

5. Образовательные технологии, в том числе технологии электронного обучения и дистанционные образовательные технологии, используемые при осуществлении образовательного процесса по дисциплине

В процессе обучения используются следующие образовательные технологии:

Вводная лекция — дает первое целостное представление о дисциплине и ориентирует студента в системе изучения данной дисциплины. Студенты знакомятся с назначением и задачами курса, его ролью и местом в системе учебных дисциплин и в системе подготовки в целом. Дается краткий обзор курса, история развития науки и практики, достижения в этой сфере, имена известных ученых, излагаются перспективные направления исследований. На этой лекции высказываются методические и организационные особенности работы в рамках данной дисциплины, а также дается анализ рекомендуемой учебно-методической литературы.

Академическая лекция (или лекция общего курса) — последовательное изложение материала, осуществляемое преимущественно в виде монолога преподавателя. Требования к академической лекции: современный научный уровень и насыщенная информативность, убедительная аргументация, доступная и понятная речь, четкая структура и логика, наличие ярких примеров, научных доказательств, обоснований, фактов.

Практическое занятие – занятие, посвященное освоению конкретных умений и навыков и закреплению полученных на лекции знаний.

6. Перечень лицензионного и (или) свободно распространяемого программного обеспечения, используемого при осуществлении образовательного процесса по дисциплине

В процессе осуществления образовательного процесса используются:

- для формирования текстов материалов для промежуточной и текущей аттестации программы Microsoft Office, издательская система LaTeX;
 - компиляторы с высокоуровневых языков программирования;
- для поиска учебной литературы библиотеки ЯрГУ Автоматизированная библиотечная информационная система "БУКИ-NEXT" (АБИС "Буки-Next").

7. Перечень современных профессиональных баз данных и информационных справочных систем, используемых при осуществлении образовательного процесса по дисциплине (при необходимости)

В процессе осуществления образовательного процесса по дисциплине используются:

8. Перечень основной и дополнительной учебной литературы, ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости), рекомендуемых для освоения дисциплины

а) основная литература

- 1. Белов, Ю. А., Лекции по математической логике и теории алгоритмов [Электронный ресурс]: учеб. пособие для студентов, обучающихся по направлению Фундаментальная информатика и информационные технологии / Ю. А. Белов, В. А. Соколов; Яросл. гос. унт, Ярославль, ЯрГУ, 2013, 138c http://www.lib.uniyar.ac.ru/edocs/iuni/20130404.pdf
- 2. Белова Л. Ю., Элементы теории множеств и математической логики : теория и задачи [Электронный ресурс]: учеб. пособие / Л. Ю. Белова, Ю. А. Белов ; Яросл. гос. ун-т, Ярославль, ЯрГУ, 2012, 200 с. http://www.lib.uniyar.ac.ru/edocs/iuni/20120210.pdf
- 3. Александров П. С. Введение в теорию множеств и общую топологию: учеб. пособие для вузов. / П. С. Александров 2-е изд., стереотип. СПб.: Лань, 2010. 367 с.

б) дополнительная литература

- 1. Дурнев В. Г. Введение в математическую логику [Электронный ресурс]: учеб. пособие для вузов. / В. Г. Дурнев; Науч. -метод. совет по математике и механике; УМО ун-тов РФ; Яросл. гос. ун-т им. П. Г. Демидова Ярославль: ЯрГУ, 2005. 187 с. http://www.lib.uniyar.ac.ru/edocs/iuni/20050294.pdf
- 2. Лавров, И. А., Задачи по теории множеств, математической логике и теории алгоритмов / И. А. Лавров, Л. Л. Максимова. 5-е изд., испр., М., ФИЗМАТЛИТ, 2003, 255с
- 3. Клини, С., Математическая логика, М., Мир, 1973, 480 с.
- 4. Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине включает в свой состав специальные помещения:

- -учебные аудитории для проведения занятий лекционного типа и практических занятий (семинаров);
- учебные аудитории для проведения групповых и индивидуальных консультаций,
- учебные аудитории для проведения текущего контроля и промежуточной аттестации; -помещения для самостоятельной работы;
- -помещения для хранения и профилактического обслуживания технических средств обучения.

Специальные помещения укомплектованы средствами обучения, служащими для представления учебной информации большой аудитории.

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, хранящиеся на электронных носителях и обеспечивающие тематические иллюстрации, соответствующие рабочим программам дисциплин.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

Число посадочных мест в лекционно составу потока, а в аудитории для практиче составу группы обучающихся.	ой аудитории больше либо равно списочному еских занятий (семинаров) – списочному					
Автор:						
Доцент кафедры						
теоретической информатики, к.фм.н.		Ю.А. Белов				
должность, ученая степень	подпись	И.О. Фамилия				

Приложение № 1 к рабочей программе дисциплины «Математическая логика»

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

1. Типовые контрольные задания и иные материалы, используемые в процессе текущего контроля успеваемости

1.1. Контрольные задания и иные материалы, используемые в процессе текущей аттестации

Задания для самостоятельной работы

Задания по теме 1

Домашние задания по теме № 1 "Логика высказываний и логика предикатов"

Задания для самостоятельного решения № 1 - 47 из параграфа 1 части II сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.

Задания для самостоятельного решения № 1.1 - 1.29 из параграфа 1 главы I сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Задания для самостоятельного решения № 1- 45 из параграфа 5 части II сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.

Задания для самостоятельного решения № 5.1 - 5.42 из параграфа 5 главы I сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Типовые индивидуальные задания

Задания по теме «Булевы функции»

- 1. Каково число булевых функций от п переменных, принимающих на противоположных наборах одинаковые значения?
- 2. Каково число булевых функций от п переменных, принимающих на смежных наборах противоположные значения?
- 3. Доказать, что если функция f реализуема формулой над C глубины k, то она реализуема над C
- 4. .4. Найти число различных булевых многочленов длины k от n переменных, равных нулю на нулевом и единичном наборах значений переменных.
- 5. Найти булеву функцию от n переменных, у которой длина многочлена в 2n раз превосходит длину её СДНФ.
- 6. Перечислить все самодвойственные функции. существенно зависящие от переменных x, y, z.
- 8. Выражается ли $x \Rightarrow y$ через систему $\{x \cdot y, x \oplus y \oplus z\}$?

- 9. Выражается ли х**V** у через $\{x \cdot y : x \oplus y \oplus z \}$?
- 10. Выражается ли х $^{\mathbf{v}}$ у через { x^{*} . ($x \oplus y$) * }?
- 11. Выражается ли $x \downarrow y$ через $\{x \cdot y \lor z \cdot, ((z \cdot \Rightarrow y) \Rightarrow x)\}$?
- 12. Выражается ли х[∗] у через {*x* · (*x* ⊕ *y*) · }?
- 13. Выражается х|у ли через {x · y · Z · v x · Z · , Z · }?
- 14. Выражается ли х[•] у через {x⊕y⊕z , x ⇒ у}?
- 15. Перечислить все функции, существенно зависящие от трех переменных, такие, что отождествление любых двух переменных приводит к функции, существенно зависящей ровно от одной переменной.
- 16. Доказать, что из многочлена степени $k \ge 3$ можно с помощью отождествления переменных получить многочлен степени k-1.
- 17. Доказать, что любой базис в T_0 содержит не более трех функций. Дать примеры базисов класса T_0 , состоящих из одной, двух и трёх функций.
- 18. Доказать, что любой базис в $T_0 \cap T_1$ содержит не более двух функций. Привести пример
- 19. базиса, состоящего из одной функции.
- 20. Каково число монотонных самодвойственных функций, существенно зависящих ровно от четырёх переменных?
- 21. Доказать, что любая монотонная функция, отличная от константы, имеет ДНФ из монотонных функций.. Аналогичное утверждение имеется для КНФ.
- 22. Доказать, что система $\{0, 1, x \land y, x \lor y\}$ образует базис в М.
- 23. Доказать, что всякий базис в М содержит не более четырёх и не менее трёх функций.
- 24. Доказать, что любая функция из $M \cap S$, существенно зависящая более чем от одной переменной, образует базис в $M \cap S$.
- 25. Доказать, что если функция f существенно зависит более, чем от одной переменной и принадлежит классу $M \cap S$, то система $\{0, f\}$ полна в B_2 .

Домашние задания по теме "Булевы функции"

- 26. Задания для самостоятельного решения № 1 36 из параграфа 2 части II сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.
- 27. Задания для самостоятельного решения № 8.1 8.45 из параграфа 8 главы 2 сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Домашние задания по теме "**Логические исчисления**. **Исчисление высказываний**" (для проверки сформированности ОПК-2)

- 28. Задания для самостоятельного решения № 1 48 из параграфа 3 части II сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.
- 29. Задания для самостоятельного решения № 3.1 3.10 из параграфа 3 главы I сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Домашние задания по теме № 5 "Исчисление предикатов" (для проверки сформированности ОПК-3)

- 30. Задания для самостоятельного решения № 1 54 из параграфа 6 части II сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.
- 31. Задания для самостоятельного решения № 6.1 6.15 из параграфа 6 главы I сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Домашние задания по теме № 6 "Метод резолюций" (для проверки сформированности ОПК-2)

32. Задания для самостоятельного решения № 1 - 54 из параграфа 6 части II сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.

Домашние задания по теме "Применения математической логики в информатике" (для проверки сформированности ОПК-3)

33. Задания для самостоятельного решения в конце параграфов 6.2 и 6.3 главы 6 учебного пособия Герасимов А.С. Курс математической логики и теории вычислимости. СПб., ЛЕМА, 2011. 284 с.

Домашние задания по теме "Алгоритмические модели. Элементы теории алгоритмов" (для проверки сформированности ОПК-3)

- 34. Задания для самостоятельного решения № 1 44 из параграфа 1 части III сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.
- 35. Задания для самостоятельного решения № 1 25 из параграфа 2 части III сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.
- 36. Задания для самостоятельного решения № 15.1 15.19 из параграфа 15 главы 3 сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Домашние задания по теме "Алгоритмическая разрешимость и неразрешимость" (для проверки сформированности ОПК-2)

- 37. Задания для самостоятельного решения № 1 48 из параграфа 3 части III сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.
- 38. Задания для самостоятельного решения № 1 43 из параграфа 4 части III сборника задач Лавров И.А. Задачи по теории множеств, математической логики и теории алгоритмов / И.А. Лавров, Л.Л. Максимова. М.: Наука. 1984. 287 с.

Домашние задания по теме № 10 " Сложность алгоритмов и вычислений" (для проверки сформированности ОПК-3)

39. Задания для самостоятельного решения № 16.1 - 16.26 из параграфа 16 главы 3 сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Домашние задания по теме № 10 **"Сложностная классификация переборных задач"** (для проверки сформированности ОПК-3)

40. Задания для самостоятельного решения № 16.1 - 16.26 из параграфа 16 главы 3 сборника задач Глухов М.М. Задачи и упражнения по математической логике, дискретным функциям и теории алгоритмов: учеб. пособие для вузов / М. М. Глухов, О. А. Козлитин, В. А. Шапошников, А. Б. Шишков. СПб., Лань, 2008, 111 с.

Проверка сформированности компетенций

Типовой вариант контрольной работы

Задания по теме «Булевы функции»

Замечание: обозначение $m(x, y, z) = x^* y^* y \cdot z v x \cdot z = x \cdot y \oplus y \cdot z \oplus x \cdot z - медиана, или функция$ голосования. Проверить.

- Доказать, что $m(x, y, z) \in [m(x, y, z)]$. 1.
- Доказать, что $x \oplus y \oplus z \in [m(x \cdot, y, z)]$. 2.
- Доказать, что [$(m(x, y, z))^{-}$]=S. 3.
- Выражается ли $x \oplus y$ через систему $\{0, 1, x, y, x \vee y\}$? 4.
- 5.
- Выражается ли $x \Rightarrow y$ через систему $\{x^*, y, x \oplus y \oplus z \}$? 6.
- Выражается ли $x^{\mathbf{V}}$ у через $\{x \cdot y \cdot x \oplus y \oplus z \}$? 7.
- Выражается ли x^{\vee} у через $\{x^{\vee}, (x \oplus y)^{\vee}\}$? 8.
- Выражается ли $x \downarrow y$ через $\{x \cdot y \lor z \land ((z \land \exists y) \Rightarrow x)\}$? 9.
- Выражается ли х у через $\{x : (x \oplus y)^* \}$? 10.
- Выражается x|y ли через $\{x^*y^*z^*vx^*z^*,z^*\}$? 11.
- Выражается ли х• у через $\{x \oplus y \oplus z , x \Rightarrow y\}$? 12.

⇒, V, 1, ⊕ ☐ } выяснить, какая из четырёх функций выражается через остальные 13. В системе { три, какая не выражается.

$$\Rightarrow$$
, $x \cdot y$, 1, \bigoplus

 \Rightarrow , $x \cdot y$, 1, \bigoplus \Box В системе { } выяснить, какая из четырёх функций выражается через 14. остальные три, какая не выражается.

15. Базисы в
$$T_0: \{x^* y \xrightarrow{z}, \{x^* y, x \oplus y\}, \{0, x^* y, x \oplus y \oplus z\}, \{x^* y, x \cdot y^*\}, \{x^* y, x \oplus y\}.$$

- Базисы в T_0 : {0, $xy \vee xz \vee y \wedge z$ }, {0, $x\nabla y, x\Phi y\Phi z$ }. 16.
- 17. Базис в $T_0 : \{x^* y \oplus x, x \oplus y \}.$
- 18. Система $\{x \cdot y \cdot x \oplus y \oplus z\}$ -- базис в T_0 .
- 19. Доказать, что любой базис Т₀ состоит из одной, двух или трёх функций. Аналогичное утверждение для T_1 .
- Базисы в T_1 : {x y, (x \oplus y) }, { x y, (x \oplus y) }, {((x v y) \oplus z) }, {x y, x v y }, {x y, x y} 20.

$$x \oplus y \bigoplus \exists$$
 {x* y, } $\{x \Rightarrow y, x \oplus y \oplus z\}, \{1, x* y, x \oplus y \oplus z\}.$ Является ли система { z *, $\{x \oplus y \oplus z\}$ *} полной?

- Является ли система $\{z^{\uparrow}, (x \oplus y \oplus z)^{\uparrow}\}$ полной? 21.
- 22. Является ли система $\{z^{-}, (x \cdot y \cdot)^{-}z \lor x^{-}, y \cdot z^{-}v \text{ y z }\}$ полной?
- Является ли система { $x \vee y \vee z$, $x \Rightarrow (y \vee z)$ } полной? 23.
- Является ли система $\{x \lor y \Rightarrow (x \cdot z)^{-}, (x|y) \lor z\}$ полной? 24.
- Является ли система $\{x \cdot y \lor z \cdot, ((z \cdot \Rightarrow y) \Rightarrow x)\}$ полной? 25.
- Является ли система $\{(x \oplus y) \Rightarrow (y \oplus z), x^*\}$ полной? 26.
- 27. Являются ли системы $\{x \Rightarrow y, x \oplus y\}, \{x \Rightarrow y, 0\}$ полными?
- Являются ли указанные системы $\{yx \Rightarrow z, z^*\}, \{x \oplus y, (x \Rightarrow y)^*\}, \{x \Rightarrow y, x \Rightarrow (z \cdot y)^*\},$ 28. $\{x \lor y \Rightarrow (x \cdot z)^{\wedge}, x(y \lor z)\}, \{x \lor y \lor z, x \Rightarrow (z \lor y)^{\wedge}\} \text{ полными}?$

- 29. Являются ли указанные системы $\{(x \oplus y)^*, (xy \lor xz \lor yz)^*\}, \{(x \lor y)^* \Rightarrow z^*, x \oplus y\}$ полными?
- 30. Являются ли указанные системы $\{(x \oplus y \oplus z)', x \Rightarrow y \} \{x \Rightarrow yz, xy''\}$ полными?
- 31. Простые базисы в P_2 : {0, 1, x^* y, $x \oplus y \oplus z$ }, {0, 1, x^* y, $x \oplus y \oplus z$ }, {0, 1, m(x, y, z), $x \oplus y \oplus z$ }.
- 32. Системы $\{x^*, y, x \oplus y \oplus z\}$, $\{x^*, y \oplus z \oplus t\}$ базисы в $T_0 \cap T_1$.
- 33. Система { $(x \oplus y)^{-}$ } -- базис в L \cap T₁.
- 34. Система $\{x \oplus y\}$ $\}$ базис в $L \cap T_0$.
- 35. Является ли базисом в $T_0 \cap T_1$ система $\{x \oplus y \oplus z, x, y, x, y, y, y, y, z\}$?
- 36. Является ли базисом в T_0 система $\{$
- 37. Система {0, 1, х ⋅ y, х ⋅ y } является базисом в М.
- 39. Привести примеры базисов в $M \cap T_1$, в $T_0 \cap M$, в $L \cap M$.
- 40. Система { $(x \oplus y \oplus z)^-$ } является базисом в S.
- 41. Класс, двойственный к данному замкнутому классу, также является замкнутым классом. Показать.
- 42. Указать классы, двойственные к T_0 , T_1 , L, M, S.
- 43. Перечислить все замкнутые конечные классы функций всего 9: [0], [1], [x], [0, 1], [0, x], [1, x], [x, x,], [1, 0, x], [0, 1, x, x,].
- 44. Являются ли полными следующие системы: $(S \cap M)^{U}$ $(L \setminus M)$, $(L \cap T_1)^{U}$ $(S \cap M)$, $(L \cap T_1)^{U}$ $(S \setminus T_0)$, $(M \setminus T_0)^{U}$ $(M \setminus T_0)^{U}$

Залания по теме «Исчисления высказываний»

Используя теорему о десяти выводимых правилах, леммы о противоположной теореме и о противоречии,

доказать, что имеются следующие отношения выводимости:

$$1. \ A \rightarrow B \vdash (B \rightarrow C) \rightarrow (A \rightarrow C), \ 2. \ A \rightarrow B \vdash (C \rightarrow A) \rightarrow (C \rightarrow B)$$

$$3. A \rightarrow B \vdash (A \lor C) \rightarrow (B \lor C), 4. A \rightarrow B \vdash (A \land C) \rightarrow (B \land C)$$

4.
$$A \rightarrow \neg B \vdash B \rightarrow \neg A$$
, 6. $A \rightarrow B \vdash \neg B \rightarrow \neg A$

$$5. \vdash A \rightarrow A, \ 8. \vdash (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B \land C))$$

$$6. \vdash \neg A \lor A, 10. \vdash (A \rightarrow B) \lor (B \rightarrow A)$$

Доказать следующие равносильности:

7.
$$A \rightarrow B \equiv \neg A \lor B$$
, 13. $\neg (A \lor B) \equiv \neg A \land \neg B$

$$8. \neg (A \wedge B) \equiv \neg A \vee \neg B,$$

9..
$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

10. A
$$\wedge$$
 (B \vee C) \equiv (A \wedge B) \vee (A \wedge C),

11.
$$A \rightarrow (B \rightarrow C) \equiv (A \land B) \rightarrow C$$

- 12. Доказать, что $X \vee Y$ и $X \wedge Y$ монотонно возрастают по X и по Y, $\neg X$ монотонно убывает по $X, X \to Y$ монотонно возрастает по Y и монотонно убывает по X.
- 13. Доказать, что аксиома 10 ИВ независима.
- 14. Доказать, что аксиомы 3 9 ИВ независимы.
- 15. Доказать, что в ИИВ справедлива теорема о дедукции: пусть $\Gamma = \{A1, A2, \dots, Ak\}$ –

произвольный набор формул, $k \ge 0$, A,B - еще две формулы ИИВ. Тогда, если Γ , $A \vdash$ иив B, то $\Gamma \vdash$ иив $A \to B$.

- 16. Доказать, что формула $\neg A \to A$ не доказуема в ИИВ.
- 17. Доказать, что формула $A \vee \neg A$ не доказуема в ИИВ.
- 18. Пусть задана предметная область $D = \{a, b, c\}$ из трёх предметов и формула $\exists y (\forall x A(x, y, z))$
- $\to \exists t B(y, t)$). Перечислить интерпретации данной формулы на данной области, не являющиеся тождественно ложными.

Задания по теме «Элементы исчисления предикатов»

- 1. Пусть задана предметная область $D = \{a, b, c\}$ из трёх предметов и формула $\exists y (\forall x A(x, y, z))$
- $\to \exists t B(y,t)$). Перечислить иинтерпретации данной формулы на данной области, не являющиеся тождественно ложными.
- 2. Построить 2-общезначимую, но не общезначимую формулу ИП.
- 3.Записать формулу с двумя свободными переменными x и y истинными тогда и только тогда x < y; когда x является делителем y.
- 4.Используя связки ИП, записать формулы с одной свободной переменной x, истинные в D=N тогда и только тогда, когда x=0; когда x-четное число; когда x простое число.
- 5. Рассматривая в качестве предметной области поле вычетов по модулю простого р, записать основные законы операций в данном поле, используя две предикатные буквы для суммы и произведения и правила построения формул ИП.

Критерии оценивания сформированности компетенции:

ОПК-2 – задания по темам «Булевы функции» и «Элементы исчисления предикатов» ОПК-3 – залания по теме «Исчисления высказываний»

«отлично» - выполнено 3 задания (по одному из каждой темы), уровень сформированности компетенции высокий;

«хорошо» - выполнено 3 задания (по одному из каждой темы) с незначительными недочетами, уровень сформированности компетенции продвинутый;

«удовлетворительно» - выполнено 2 задания, уровень сформированности компетенции пороговый.

Список заданий к зачету

Зачет выставляется по результатам тестового задания и краткого собеседования со студентом после его проверки. Тестовое задание аналогично по своей структуре заданиям из контрольной работы, варианты конкретных заданий для каждого обучающегося подбираются с учётом текущей успеваемости данного студента по конкретным темам.

Список вопросов к экзамену

- 1) Язык логики высказываний: алфавит, пропозициональные переменные и пропозициональные связки, формулы. Интерпретации, истинностное значение формулы в интерпретации. Тождественно истинные и выполнимые формулы.
- 2) Язык логики предикатов: сигнатура, термы и формулы, свободные и связанные вхождения переменных. Интерпретации. Значение замкнутого терма в интерпретации. Истинностное значение замкнутой формулы в интерпретации.
- 3) Оценки. Значение терма и формулы на оценке при данной интерпретации. Выполнимые, тождественно истинные и тождественно ложные формулы. Равносильность формул, основные соотношения равносильности и их использование для упрощения формул. Предваренные нормальные формы, дизьюнктивные и конъюнктивные нормальные формы.
- 4) Булевы функции и их представление термами и формулами над заданной системой функций. Представление булевых функций формулами алгебры высказываний и многочленами Жегалкина.
- 5) Замкнутые классы функций. Критерии полноты для булевых функций.
- 6) Псевдобулевы функции и их задание. Минимизация булевых функций.
- 7) Логические исчисления. Общее понятие о логическом исчислении.
- 8) Язык, аксиомы и правила вывода исчисления высказываний. Вывод и выводимость формул в исчислении высказываний. Вывод из множества гипотез.
- 9) Теорема дедукции для ИВ. Непротиворечивость исчисления высказываний.
- 10) Формулы ИВ и булевы функции.

- 11) Критерий выводимости формулы ИВ из аксиом и условий. Разрешимость аксиоматической теории ИВ.
- 12) Исчисление предикатов. Язык, логические аксиомы и правила вывода исчисления предикатов. Вывод и выводимость формул в исчислении предикатов. Вывод и выводимость формул из множества гипотез.
- 13) Теорема дедукции. Вспомогательные правила вывода. Эквивалентность формул. Приведение формул к нормальным формам.
- 14) Теоремы непротиворечивости и адекватности. Непротиворечивость исчисления предикатов.
- 15) Теорема К.Геделя о полноте для исчисления предикатов.
- 16) Элементы теории моделей. Применение исчисления предикатов для записи математических утверждений и для автоматизации доказательства теорем.
- 17) Метод резолюции. Применение исчисления предикатов для доказательства теорем. Секвенциальный и натуральный вывод в исчислении предикатов.
- 18) Сколемовская стандартная форма. Семантические деревья. Метод резолюции для логики предикатов. Унификация. Теорема о наиболее общем унификаторе. Теорема о полноте метода резолюции для логики предикатов.
- 19) Применение логики предикатов в дедуктивных базах данных и экспертных системах.
- 20) Основные понятия логического программирования: хорновские дизьюнкты, SLD резолюция. Методика составления и реализация логических программ.
- 19) Применения математической логики в информатике. Исчисление Хоара для доказательства корректности программ.
- 20) Логико-математические подходы к верификации программ. Операционная семантика. Оценки для интерпретаций языков. Значение терма и формулы на данной оценке.
- 21) Аксиоматическая семантика программ. Триады Хоара. Аксиомы и правила вывода исчисления Хоара. Корректность исчисления Хоара относительно операционной семантики.
- 22) Алгоритмическая разрешимость и неразрешимость. Нумерация слов в счетном алфавите и арифметизация алгоритмов.
- 23) Примеры алгоритмически неразрешимых массовых задач. Примеры алгоритмически разрешимых и неразрешимых задач из математической логики, теории алгоритмов, алгебры, теории чисел, теории формальных грамматик, теории обыкновенных дифференциальных уравнений, топологии, математического анализа и теории конечных автоматов.
- 24) Теорема Черча о неразрешимости логики предикатов.
- 25) Сложность алгоритмов и вычислений. Подходы к оценкам сложности алгоритмов и вычислений. Сложность вычисления на машине Тьюринга. Временная и емкостная меры сложности.
- 26) Существование сколь угодно сложно вычислимых функций.
- 27) Теория алгоритмов и задачи использования ЭВМ. Вычислительные возможности современных ЭВМ. Модель ЭВМ машина произвольного доступа (МПД). МПД вычислимые функции и их связь с частично рекурсивными функциями
- Экзамен заключается в решении нескольких задач по темам, раскрываемых в рамках дисциплины. Задания аналогичны тем, которые даются в качестве индивидуальных заданий.

Критерии оценивания сформированности компетенции:

«отлично» - выполнено 3 задания (по одному из каждой темы), уровень сформированности компетенции высокий;

«хорошо» - выполнено 3 задания (по одному из каждой темы) с незначительными недочетами, уровень сформированности компетенции продвинутый;

«удовлетворительно» - выполнено 2 задания, уровень сформированности компетенции пороговый.

Приложение № 2 к рабочей программе дисциплины «Математическая логика»

Методические указания для студентов по освоению дисциплины

Методические указания для студентов по освоению дисциплины Основной формой изложения учебного материала по данной дисциплине являются лекции, причем в достаточно большом объеме. Это связано с тем, что математическая логика излагается как формальная аксиоматическая теория, с примерами которых студенты до этого фактически не были знакомы.

По большинству тем предусмотрены практические занятия, на которых происходит закрепление лекционного материала путем применения его к конкретным задачам. Для успешного освоения дисциплины очень важно решение достаточно большого количества задач, как в аудитории, так и самостоятельно в качестве домашних заданий. Примеры решения задач разбираются на лекциях и практических занятиях, при необходимости по наиболее трудным темам проводятся дополнительные консультации. Основная цель решения задач — помочь усвоить фундаментальные понятия и основы построения аксиоматических математических теорий.

Для решения всех задач необходимо знать и понимать лекционный материал. Поэтому в процессе изучения дисциплины рекомендуется регулярное повторение пройденного лекционного материала. Материал, законспектированный на лекциях, необходимо дома еще раз прорабатывать и при необходимости дополнять информацией, полученной на консультациях, практических занятиях или из учебной литературы.

Большое внимание должно быть уделено выполнению домашней работы. В качестве заданий для самостоятельной работы дома студентам предлагаются задачи, аналогичные разобранным на лекциях и практических занятиях или немного более сложные, которые являются результатом объединения нескольких базовых задач.

Для проверки и контроля усвоения теоретического материала, приобретенных практических навыков работы с аппаратом современной математической логики, в течение обучения проводятся мероприятия текущей аттестации в виде контрольной работы в 1-ом семестре и самостоятельных работ в обоих семестрах изучения дисциплины. Также проводятся консультации (при необходимости) по разбору заданий для самостоятельной работы, которые вызвали затруднения.

В конце первого семестра изучения дисциплины студенты сдают зачет, в конце всего курса — экзамен. Зачет по итогам первого семестра выставляется по итогам тестирования и краткого собеседования по его результатам. Экзамен принимается в аудитории, где студентам предлагаются экзаменационные билеты, каждый из которых включает в себя две задачи. На самостоятельную подготовку к экзамену выделяется 30 минут. До экзамена, и во время подготовки к экзамену предусмотрена групповая консультация. Освоить вопросы, излагаемые в процессе изучения дисциплины «математическая логика» самостоятельно студенту крайне сложно. Это связано со сложностью изучаемого материала. Поэтому посещение всех аудиторных занятий является совершенно необходимым. Без упорных и регулярных занятий в течение семестра сдать зачет и экзамен по итогам изучения дисциплины студенту практически невозможно.

Учебно-методическое обеспечение самостоятельной работы студентов по дисциплине

В качестве учебно-методического обеспечения рекомендуется использовать литературу, указанную в разделе № 7 данной рабочей программы. Также для подбора учебной литературы рекомендуется использовать широкий спектр интернет-ресурсов:

- 1. Электронно-библиотечная система «Университетская библиотека online» (www.biblioclub.ru) электронная библиотека, обеспечивающая доступ к наиболее востребованным материалам-первоисточникам, учебной, научной и художественной литературе ведущих издательств (*регистрация в электронной библиотеке только в сети университета. После регистрации работа с системой возможна с любой точки доступа в Internet.).
- 2. Информационная система "Единое окно доступа к образовательным ресурсам" (http://window.edu.ru/library).

Целью создания информационной системы "Единое окно доступа к образовательным ресурсам" (ИС "Единое окно ") является обеспечение свободного доступа к интегральному каталогу образовательных интернет-ресурсов и к электронной библиотеке учебно-методических материалов для общего и профессионального образования. Информационная система "Единое окно доступа к образовательным ресурсам" создана по заказу Федерального агентства по образованию в 2005-2008 гг. Головной разработчик проекта - Федеральное государственное автономное учреждение Государственный научно-исследовательский институт информационных технологий и телекоммуникаций (ФГАУ ГНИИ ИТТ "Информика") www.informika.ru.

ИС "Единое окно" объединяет в единое информационное пространство электронные ресурсы свободного доступа для всех уровней образования в России. Разделы этой системы:

- Электронная библиотека является крупнейшим в российском сегменте Интернета хранилищем полнотекстовых версий учебных, учебно-методических и научных материалов с открытым доступом. Библиотека содержит более 30 000 материалов, источниками которых являются более трехсот российских вузов и других образовательных и научных учреждений. Основу наполнения библиотеки составляют электронные версии учебно-методических материалов, подготовленные в вузах, прошедшие рецензирование и рекомендованные к использованию советами факультетов, учебно-методическими комиссиями и другими вузовскими структурами, осуществляющими контроль учебно-методической деятельности.
- Интегральный <u>каталог</u> образовательных интернет-ресурсов содержит представленные в стандартизованной форме метаданные внешних ресурсов, а также содержит описания полнотекстовых публикаций электронной библиотеки. Общий объем каталога превышает 56 000 метаописаний (из них около 25 000 внешние ресурсы). Расширенный поиск в "Каталоге" осуществляется по названию, автору, аннотации, ключевым словам с возможной фильтрацией по тематике, предмету, типу материала, уровню образования и аудитории.
- Избранное. В разделе представлены подборки наиболее содержательных и полезных, по мнению редакции, интернет-ресурсов для общего и профессионального образования.
- <u>Библиотеки вузов</u>. Раздел содержит подборки сайтов вузовских библиотек, электронных каталогов библиотек вузов и полнотекстовых электронных библиотек вузов. Для самостоятельного подбора литературы в библиотеке ЯрГУ рекомендуется использовать:
- 1. Личный кабинет (http://lib.uniyar.ac.ru/opac/bk login.php) дает возможность получения on-line доступа к списку выданной в автоматизированном режиме литературы, просмотра и копирования электронных версий изданий сотрудников университета (учеб. и метод. пособия, тексты лекций и т.д.) Для работы в «Личном кабинете» необходимо зайти на сайт Научной библиотеки ЯрГУ с любой точки, имеющей доступ в Internet, в пункт меню «Электронный каталог»; пройти процедуру авторизации, выбрав вкладку «Авторизация», и заполнить представленные поля информации.
- 2. Электронная библиотека учебных материалов ЯрГУ

(http://www.lib.uniyar.ac.ru/opac/bk_cat_find.php) содержит более 2500 полных текстов учебных и учебно-методических материалов по основным изучаемым дисциплинам, изданных в университете. Доступ в сети университета, либо по логину/паролю.

3. Электронная картотека «Книгообеспеченность»
(http://www.lib.uniyar.ac.ru/opac/bk_bookreq_find.php) раскрывает учебный фонд научной библиотеки ЯрГУ, предоставляет оперативную информацию о состоянии книгообеспеченности дисциплин основной и дополнительной литературой, а также цикла дисциплин и специальностей. Электронная картотека «Книгообеспеченность» доступна в сети университета и через Личный кабинет.