МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Ярославский государственный университет им. П.Г. Демидова» Математический факультет

УТВЕРЖДАЮ

Декан факультета

Нестеров П.Н.

«21» октября 2023 г.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ В АСПИРАНТУРУ

ПО НАУЧНОЙ СПЕЦИАЛЬНОСТИ

1.1.2 Дифференциальные уравнения и математическая физика

ВОПРОСЫ К ВСТУПИТЕЛЬНОМУ ЭКЗАМЕНУ ОБЩИЕ ВОПРОСЫ

- 1. Теорема существования и единственности решения задачи Коши для систем обыкновенных дифференциальных уравнений. Непрерывность и дифференцируемость решений по начальным условиям и параметрам (1 гл. 1,4).
- 2. Системы линейных дифференциальных уравнений с постоянными и переменными коэффициентами. Системы линейных разностных уравнений (1 гл. 2,3,6).
- 3. Понятие устойчивости по Ляпунову. Теорема Ляпунова об устойчивости по первому приближению. Функции Ляпунова. Второй метод Ляпунова (1 гл. 5).
- 4. Автономные системы обыкновенных дифференциальных уравнений. Положения равновесия, предельные циклы, устойчивость, теорема Пуанкаре–Бендиксона. Седло, фокус, узел, центр (1, гл.6, 11).
- 5. Численные методы решения обыкновенных дифференциальных уравнений. Методы Рунге–Кутты. Многошаговые методы (11).
 - 6. Элементы вариационного исчисления (2, гл.2).
- 7. Интегральные уравнения Фредгольма. Основы теории. Сведение краевых задач к интегральным уравнениям с помощью функции Грина (4, гл. 4,5; 5, гл. 2).
 - 8. Характеристики уравнений с частными производными (6, гл.1).
- 9. Классификация уравнений с частными производными второго порядка. Постановка основных краевых задач (3,4,9).
- 10. Классические решения основных краевых задач для эллиптических уравнений. Уравнение Лапласа. Основные свойства гармонических функций (2,3,4, 5,9).
- 11. Обобщенные решения основных краевых задач для эллиптических уравнений (4,9).
- 12. Уравнения параболического типа. Постановка краевых задач. Обоснование метода Фурье (3,4,5,9).
- 13. Уравнения гиперболического типа. Постановка основных краевых задач. Решение смешанной задачи. Обоснование метода Фурье. Обобщенные решения. Решение задачи Коши (3,4,9).
 - 14. Метод конечных разностей. Общие сведения. Разностные схемы (6).

15. Разностные уравнения с дискретным и непрерывным временем. Основные свойства решений. Приложения (12, раздел 1, гл. 1, раздел 2, гл.1, раздел 4, гл.1)

СПЕЦИАЛЬНЫЕ ВОПРОСЫ

- 1. Асимптотические методы в математическом моделировании. Классическая теория Пуанкаре. Метод усреднения (12).
 - 2. Автоколебательные системы. Методы расчета автоколебательных систем (12).
- 3. Нормальные формы дифференциальных уравнений. Приведение к нормальной форме (16, 1.4).
- 4. Основные критические случаи в задаче об устойчивости решений обыкновенных дифференциальных уравнений (16, 1.5).
- 5. Универсальное поведение квадратичных отображений. Бифуркация удвоения (11).
- 6. Детерминированный хаос. Эксперименты и простые модели. Роль компьютерного эксперимента в изучении детерминированного хаоса (11, гл.1).
- 7. Странные аттракторы. Размерность странных аттракторов. Компьютерные методы вычисления характеристик странных аттракторов. (17, лекция 10)

СПИСОК ЛИТЕРАТУРЫ,

РЕКОМЕНДУЕМОЙ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ

- 1. Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М.: Наука, 1974.
 - 2. Смирнов В.И. Курс высшей математики. Т.4. М.: Наука, 1958.
- 3. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1972.
 - 4. Владимиров В.С. Уравнения математической физики. М.: Наука, 1975.
- 5. Петровский И.Г. Лекции об уравнениях с частными производными. М.: Физматгиз, 1961.
- 6. Самарский А.А. Теория разностных схем. М.: Наука, 1977. 7. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: Наука, 1984.
- 8. Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику. М.: Наука, 1988.
 - 9. Годунов С.К. Уравнения математической физики. М.: Наука, 1971.
- 10. Шарковский А.Н., Майстренко Ю.Л., Романенко Е.Ю. Разностные уравнения и их приложения. Киев: Наукова Думка, 1986.
 - 11. Шустер Г. Детерминированный хаос. Введение. М.: МИР.1988.
- 12. Моисеев Н.Н. Асимптотические методы нелинейной механики. М.: Наука, 1981.
 - 13. Малкин И.Г. Теория устойчивости движения. М.: Наука, 1966.
- 14. Брюно А.Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: Наука, 1979.
 - 15. Странные аттракторы. М.: МИР, 1981.
- 16. Глызин С.Д., Колесов А.Ю. Локальные методы анализа динамических систем: Учебн. пособие. Ярославль: ЯрГУ, 2006.
 - 17. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001.

РЕСУРСЫ СЕТИ ИНТЕРНЕТ

- 1. Муратова, Т. В. Дифференциальные уравнения : учебник и практикум для вузов / Т. В. Муратова. Москва : Издательство Юрайт, 2023. 435 с. (Высшее образование). ISBN 978-5-534-01456-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/510931
- 2. Боровских, А. В. Дифференциальные уравнения в 2 ч. Часть 1 : учебник и практикум для вузов / А. В. Боровских, А. И. Перов. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 327 с. (Высшее образование). ISBN 978-5-534-01777-9. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/512338
- 3. Боровских, А. В. Дифференциальные уравнения в 2 ч. Часть 2 : учебник и практикум для вузов / А. В. Боровских, А. И. Перов. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 274 с. (Высшее образование). ISBN 978-5-534-02097-7. URL : https://urait.ru/bcode/512988
- 4. Аксенов, А. П. Дифференциальные уравнения в 2 ч. Часть 1 : учебник для вузов / А. П. Аксенов. Москва : Издательство Юрайт, 2023. 241 с. (Высшее образование). ISBN 978-5-9916-7420-1. URL : https://urait.ru/bcode/512806
- 5. Аксенов, А. П. Дифференциальные уравнения в 2 ч. Часть 2 : учебник для вузов / А. П. Аксенов. Москва : Издательство Юрайт, 2023. 359 с. (Высшее образование). ISBN 978-5-9916-7422-5. URL : https://urait.ru/bcode/512807
- 6. Зайцев, В. Ф. Дифференциальные уравнения с частными производными первого порядка : учебное пособие для вузов / В. Ф. Зайцев, А. Д. Полянин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 416 с. (Высшее образование). ISBN 978-5-534-02377-0. URL : https://urait.ru/bcode/513212
- 7. Дифференциальные уравнения. Устойчивость и оптимальная стабилизация: учебное пособие для вузов / А. Н. Сесекин [и др.]; ответственный редактор А. Н. Сесекин; под научной редакцией А. Ф. Шорикова. Москва: Издательство Юрайт, 2022. 119 с. (Высшее образование). ISBN 978-5-534-08215-9. URL: https://urait.ru/bcode/493627

- 8. Жуковский, В. И. Дифференциальные уравнения. Линейно-квадратичные дифференциальные игры: учебное пособие для вузов / В. И. Жуковский, А. А. Чикрий; ответственный редактор В. А. Плотников. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2023. 322 с. (Высшее образование). ISBN 978-5-534-05016-5. URL: https://urait.ru/bcode/515094
- 9. Бугров, Я. С. Высшая математика в 3 т. Том 3. В 2 кн. Книга 1. Дифференциальные уравнения. Кратные интегралы: учебник для вузов / Я. С. Бугров, С. М. Никольский. 7-е изд., стер. Москва: Издательство Юрайт, 2023. 288 с. (Высшее образование). ISBN 978-5-9916-8643-3. URL: https://urait.ru/bcode/513370
- 10. Зайцев, В. Ф. Обыкновенные дифференциальные уравнения в 2 ч. Часть 1 : справочник для вузов / В. Ф. Зайцев, А. Д. Полянин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 385 с. (Высшее образование). ISBN 978-5-534-02685-6. URL : https://urait.ru/bcode/513213
- 11. Зайцев, В. Ф. Обыкновенные дифференциальные уравнения в 2 ч. Часть 2 : справочник для вузов / В. Ф. Зайцев, А. Д. Полянин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 196 с. (Высшее образование). ISBN 978-5-534-02690-0. URL : https://urait.ru/bcode/513962
- 12. Новак, Е. В. Интегральное исчисление и дифференциальные уравнения : учебное пособие для вузов / Е. В. Новак, Т. В. Рязанова, И. В. Новак ; под общей редакцией Т. В. Рязановой. Москва : Издательство Юрайт, 2022. 112 с. (Высшее образование). ISBN 978-5-534-08358-3. URL : https://urait.ru/bcode/492235
- 13. Стеклов, В. А. Основы теории интегрирования обыкновенных дифференциальных уравнений : учебное пособие для вузов / В. А. Стеклов. Москва : Издательство Юрайт, 2023. 427 с. (Высшее образование). ISBN 978-5-534-02124-0. URL : https://urait.ru/bcode/514610
- 14. Королев, А. В. Дифференциальные и разностные уравнения : учебник и практикум для вузов / А. В. Королев. Москва : Издательство Юрайт, 2023. 280 с. (Высшее образование). ISBN 978-5-9916-9896-2.

URL: https://urait.ru/bcode/512166

- Полянин, А. Д. Уравнения и задачи математической физики в 2 ч. Часть 1: 15. справочник для вузов / А. Д. Полянин. — 2-е изд., испр. и доп. — Москва: Издательство Юрайт, 2023. — 261 с. — (Высшее образование). — ISBN 978-5-534-01644-4. — URL: https://urait.ru/bcode/513214
- Полянин, А. Д. Уравнения и задачи математической физики в 2 ч. Часть 2 : 16. справочник для вузов / А. Д. Полянин. — 2-е изд., испр. и доп. — Москва: Издательство Юрайт, 2023. — 333 с. — (Высшее образование). — ISBN 978-5-534-01646-8. — URL: https://urait.ru/bcode/514016
- Палин, В. В. Методы математической физики. Лекционный курс: учебное 17. пособие для вузов / В. В. Палин, Е. В. Радкевич. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2023. — 222 с. — (Высшее образование). — ISBN 978-5-534-03589-6. — URL: https://urait.ru/bcode/514448
- Лобанов. А. И. Математическое моделирование нелинейных процессов : учебник для вузов / А. И. Лобанов, И. Б. Петров. — Москва : Издательство Юрайт, 2023. — 255 с. — (Высшее образование). — ISBN 978-5-9916-8897-0. — URL: https://urait.ru/bcode/513132

Программа утверждена на заседании кафедры математического моделирования «10» октября 2023 года (протокол № 2).

Заведующий кафедрой _______ Кащенко И.С.

приложение 1

ОБРАЗЦЫ БИЛЕТОВ ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА

Ярославский государственный университет им. П.Г. Демидова
Математический факультет
Вступительный экзамен по научной специальности
1.1.2 Дифференциальные уравнения и математическая физика

Билет № 1

- 1. Теорема существования и единственности решения задачи Коши для систем обыкновенных дифференциальных уравнений. Непрерывность и дифференцируемость решений по начальным условиям и параметрам.
 - 2. Автоколебательные системы. Методы расчета автоколебательных систем.

Декан мат	ематического	факультета	 _ Нестеров П.Н.
_			

Ярославский государственный университет им. П.Г. Демидова Математический факультет

Вступительный экзамен по научной специальности
1.1.2 Дифференциальные уравнения и математическая физика

Билет № 2

- 1. Системы линейных дифференциальных уравнений с постоянными и переменными коэффициентами. Системы линейных разностных уравнений.
- 2. Детерминированный хаос. Эксперименты и простые модели. Роль компьютерного эксперимента в изучении детерминированного хаоса.

Декан математического факультета	Нестеров П.Н
Actual marcharin rection of duty institution	

КРИТЕРИИ ОЦЕНКИ РЕЗУЛЬТАТОВ СДАЧИ ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА

Ответ на теоретический вопрос

Высокий уровень: продемонстрированы полные и системные знания по всем вопросам билета; допускается одна незначительная неточность в изложении материала.

Хороший уровень: требования в целом аналогичные высокому уровню, однако допускается несколько незначительных неточностей.

Удовлетворительный уровень: продемонстрировано относительно полное знание теоретических положений; допускаются неточности формулировок и/или неполнота аргументации – при общем верном направлении изложения материала.

Неудовлетворительный уровень: ответа нет; материал изложен не по конкретной теме вопроса; не продемонстрировано знание теоретических положений; допущены грубые ошибки в изложении материала.

Дополнительные структурные и количественные показатели

Показатели	Критерии			
Понимание	• Ответ наличествует			
вопроса	• Ответ по существу вопроса без отвлечения на посторон-			
	ние/второстепенные детали			
Содержание	• Продемонстрированы полные и системные знания по вопросу			
ответа	• Продемонстрированы навыки математического мышления в поста-			
	новке проблем и поиске алгоритмов их решения			
Обоснован-	• Раскрыты все необходимые компоненты вопроса			
ность и пол-	• Сделаны все необходимые выводы по вопросу			
нота ответа	• Выводы обоснованы			
Изложение	• Владение навыками грамотной устной/письменной речи			
ответа	• Владение специальной математической\профессиональной терми-			
	нологией			

Шкала оценивания: 0 баллов – полное отсутствие критерия; 1 балл – частичное выполнение критерия; 2 балла – полное выполнение критерия

Оценка проставляется по количеству набранных баллов:

- менее 60 % от максимально возможного количества баллов «0-3,75 баллов»,
- 60-75 % от максимально возможного количества баллов, из них не менее 2 баллов за содержание ответа «4-5,75 баллов»,
- 76-85 % от максимально возможного количества баллов, из них не менее 4 баллов за содержание ответа «6-7,75 баллов»,
- 86-100 % от максимально возможного количества баллов, из них не менее 5 баллов за содержание «8-10 баллов».